DE LARA Lucas

Position Postdoctoral researcher
Teaching department
Faculté des Sciences et Technologies
Research group Probabilities and statistic
Research fields

Trustworthy machine learning

Keywords

Machine Learning, Optimal Transport, Causality, Fairness

Mail

IECL – Site de Nancy
Faculté des sciences et Technologies
Campus, Boulevard des Aiguillettes
54506 Vandœuvre-lès-Nancy

Email lucas.de-lara@univ-lorraine.fr

Pour la version française c’est par ici !

My research focuses on trustworthy machine learning using tools from optimal-transport theory and causal inference.

I’m currently a postdoctoral researcher in applied mathematics at IECL and CRAN (Nancy, France), investigating various aspects of causality and machine learning with Marianne Clausel.

Before that, I did my PhD at IMT (Toulouse, France) on fair machine learning and optimal transport with Jean-Michel Loubes and Laurent Risser.

My CV updated on December 1, 2024.

Check my Google Scholar and Github for the manuscripts and the codes

Publications

[1] Transport-based counterfactual models, L De Lara, A González-Sanz, N Asher, L Risser, JM Loubes, Journal of Machine Learning Research 25 (136), 1-59 (2024)

[2] Diffeomorphic registration using Sinkhorn divergences, L De Lara, A González-Sanz, JM Loubes, SIAM Journal on Imaging Sciences 16 (1), 250-279 (2023)

[3] Counterfactual models for fair and adequate explanations, N Asher, L De Lara, S Paul, C Russell, Machine Learning and Knowledge Extraction 4 (2), 316-349 (2022)


Preprints

[1] On the nonconvexity of push-forward constraints and its consequences in machine learning, L De Lara, M Deronzier, A González-Sanz, V Foy, Under review (2024)

[2] A clarification on the links between potential outcomes and do-interventions, L De Lara, Under review (2024)

[3] GAN estimation of Lipschitz optimal transport maps, A González-Sanz, L De Lara, L Béthune, JM Loubes (2022)

[4] A consistent extension of discrete optimal transport maps for machine learning applications, L De Lara, A González-Sanz, JM Loubes (2021)
  • 2023 – 2024 : Research and teaching assistant at Université Paul Sabatier
  • 2020 – 2023 : PhD in applied mathematics at Université Paul Sabatier
  • 2019 – 2020 : M2 in statistics and machine learning at Université Paris-Saclay
  • 2016 – 2019 : Ecole polytechnique (major in applied mathematics)