Upcoming presentations
Past presentations
Quand la théorie de la mesure rencontre celle de Fourier: le théorème de De Philippis et Rindler (Annals of math. 2016)
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 7 December 2021 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antoine Lemenant Résumé :Le but de l’exposé est de comprendre la preuve du théorème de De Philippis et Rindler (2016) qui redémontre et généralise dans un cadre beaucoup plus étendu le fameux théorème dit “Rang-1” d’Alberti (1993). Pour rappel, celui-ci stipule que toute mesure (à valeurs Matrices) qui est Curl-free doit avoir une partie singulière de rang-1, répondant en particulier à une question de De Giorgi et Ambrosio à propos des fonctions BV. De Philippis et Rindler ont récemment généralisé ce résultat en découvrant une nouvelle preuve assez astucieuse basée sur la théorie de Fourier, ayant d’autres applications intéressantes. Nous nous efforcerons de faire des rappels introductifs de manière à comprendre au mieux la preuve sans trop de pré-requis, ainsi que ses principales applications.
Les notes de l’exposé d’Antoine Lemenant sont disponibles sur sa page web, en suivant ce lien.
Estimations de Strichartz pour l'équation de Schrödinger sur un domaine borné et applications
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 16 November 2021 09:45-10:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tristan Robert Résumé :Les estimations de type Strichartz sont un outil fondamental dans l’étude des EDP dispersives, en particulier pour leur application dans l’étude de modèles non-linéaires. Après avoir rappelé brièvement comment obtenir ces estimations pour l’équation de Schrödinger sur l’espace Euclidien et leur utilité dans la résolution du problème de Cauchy pour une équation semi-linéaire, nous verrons comment traiter le cas d’un domaine compact, d’abord général puis les améliorations possibles dans le cas d’un tore. Si le temps le permet, nous montrerons également comment les estimations de Strichartz semi-classiques peuvent être utiles dans l’analyse de problèmes dispersifs quasi-linéaires.
Estimations de Strichartz pour l'équation de Schrödinger sur un domaine borné et applications
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 9 November 2021 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tristan Robert Résumé :Les estimations de type Strichartz sont un outil fondamental dans l’étude des EDP dispersives, en particulier pour leur application dans l’étude de modèles non-linéaires. Après avoir rappelé brièvement comment obtenir ces estimations pour l’équation de Schrödinger sur l’espace Euclidien et leur utilité dans la résolution du problème de Cauchy pour une équation semi-linéaire, nous verrons comment traiter le cas d’un domaine compact, d’abord général puis les améliorations possibles dans le cas d’un tore. Si le temps le permet, nous montrerons également comment les estimations de Strichartz semi-classiques peuvent être utiles dans l’analyse de problèmes dispersifs quasi-linéaires.
Contrôlabilité de l'équation de la chaleur avec contraintes sur le contrôle
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 19 October 2021 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Christophe Zhang Résumé :On s’intéresse à un problème de contrôle approché de l’équation de la chaleur par des “formes” : des contrôles internes, qui en espace sont des fonctions caractéristiques d’ensembles de mesures uniformément bornées.
En partant de l’exemple de la méthode HUM, on montre comment des outils d’analyse et d’optimisation convexes peuvent être utilisés pour étudier les propriétés de contrôlabilité d’un tel système, comportant des contraintes sur le contrôle. Pour faire cela, on voit la recherche de contrôles comme la recherche de contrôles optimaux pour un certain coût bien choisi. En posant ensuite ce problème de contrôle optimal comme un problème d’optimisation convexe sous contraintes, on peut appliquer des résultats généraux d’optimisation convexe pour conclure.
L’outil central de cette approche est la notion de dualité de Fenchel-Rockafellar, qui associe à un problème d’optimisation (dit primal) un problème dit dual. Ces deux problèmes peuvent être vus comme les deux facettes de la formulation Hamiltonienne du problème, de manière analogue aux problèmes de mécanique en physique, où l’on peut opter pour une formulation en coordonnées ou une formulation avec les moments. L’avantage du problème dual est que même si le problème primal comporte des contraintes, le problème dual s’écrit en revanche sans contraintes (mais avec des termes supplémentaires).
Dans la méthode HUM, la solution du problème dual permet de construire le contrôle optimal. Cela se généralise en fait à tout problème de contrôle optimal sous de bonnes hypothèses, et permet d’obtenir le résultat pour le contrôle de l’équation de la chaleur par des “formes”.
Contrôlabilité de l'équation de la chaleur avec contraintes sur le contrôle
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 12 October 2021 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Christophe Zhang Résumé :On s’intéresse à un problème de contrôle approché de l’équation de la chaleur par des “formes” : des contrôles internes, qui en espace sont des fonctions caractéristiques d’ensembles de mesures uniformément bornées.
En partant de l’exemple de la méthode HUM, on montre comment des outils d’analyse et d’optimisation convexes peuvent être utilisés pour étudier les propriétés de contrôlabilité d’un tel système, comportant des contraintes sur le contrôle. Pour faire cela, on voit la recherche de contrôles comme la recherche de contrôles optimaux pour un certain coût bien choisi. En posant ensuite ce problème de contrôle optimal comme un problème d’optimisation convexe sous contraintes, on peut appliquer des résultats généraux d’optimisation convexe pour conclure.
L’outil central de cette approche est la notion de dualité de Fenchel-Rockafellar, qui associe à un problème d’optimisation (dit primal) un problème dit dual. Ces deux problèmes peuvent être vus comme les deux facettes de la formulation Hamiltonienne du problème, de manière analogue aux problèmes de mécanique en physique, où l’on peut opter pour une formulation en coordonnées ou une formulation avec les moments. L’avantage du problème dual est que même si le problème primal comporte des contraintes, le problème dual s’écrit en revanche sans contraintes (mais avec des termes supplémentaires).
Dans la méthode HUM, la solution du problème dual permet de construire le contrôle optimal. Cela se généralise en fait à tout problème de contrôle optimal sous de bonnes hypothèses, et permet d’obtenir le résultat pour le contrôle de l’équation de la chaleur par des “formes”.
Inégalités de Strichartz pour l'équation de Schrödinger
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 4 February 2020 09:15-10:15 Lieu : Oratrice ou orateur : Laurent Thomann Résumé :Résumé
Décroissance du nombre de zéros des solutions d'une équation parabolique
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2020 09:15-10:15 Lieu : Oratrice ou orateur : THOMAS GILETTI Résumé :Résumé
Laplaciens Fractionnaires dans un ouvert borné
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 November 2019 09:15-10:15 Lieu : Oratrice ou orateur : Maha Daoud Résumé :Dans cet exposé, nous allons rappeler deux ou trois définitions du Laplacien fractionnaire dans $R^N$ qui sont toutes équivalentes. Puis nous montrons que chacune des définitions donne un “Laplacien fractionnaire” dans le cas d’un domaine ouvert borné de $R^N$. Enfin, nous présentons des simulations numériques pour illustrer la différence entre les “Laplaciens fractionnaires” les plus étudiés dans la littérature.
Quelques résultats de contrôle pour l'équation de KdV
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 November 2019 09:15-10:15 Lieu : Oratrice ou orateur : JULIE VALEIN Résumé :Résumé
Existence versus non existence de solutions globales d'EDP d'ordre m
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 October 2019 09:15-10:15 Lieu : Oratrice ou orateur : SAàD BENACHOUR Résumé :Résumé