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Abstract

We establish a maximal velocity bound for a pseudo-relativistic quantum particle
in an external time-dependent potential. Our estimate shows that the probability for
the particle, starting in a convex set X C R% at t = 0, to reach a convex set Y C R?
at a time t > 0, is bounded by e~2% where ¢ is the distance from Y to the section at
time t of the light cone generated by X.

1 Introduction

We consider a pseudo-relativistic quantum particle placed in a time-dependent external po-
tential V;, in dimension d > 1. In units such that the Planck constant and the velocity of
light are equal to 1, the dynamics of the particle is given by the linear pseudo-relativistic (or
semi-relativistic) Schrédinger equation

10y = (v —A+m?—m+ Vt)%
thO = w()?

in R?, where m > 0 is the mass of the particle. Forallt > 0, V; : R — R is a time-dependent
real-valued potential representing the external forces applied to the particle, and the kinetic

energy v —A + m? — m is the Fourier multiplier defined by
V=A+m?—m=F (V[ +m?>—m)F.

Here and it what follows, F stands for the usual Fourier transform (we omit the choice of
the normalization of the Fourier transform as it is irrelevant for our purpose). To simplify
the exposition, we drop the constant mass term, which will have no influence on our results,
and we take m = 1. The main equation studied in this paper is therefore

{z’atwt = (V) + Vi), (V) i=vI-A,

¢t:0 = wo- (1.1)



We will assume that the initial state ) belongs to the Sobolev space H/2(R?).

Our main concern is the estimate of the speed of propagation of solutions to . More
precisely, we aim at establishing a maximal velocity bound, showing that the probability
that a quantum particle whose dynamics is described by travels faster than the speed
of light is exponentially small as illustrated intuitively in Fig. This will be made more
precise in the statements below.

Time _
0 X + B(0,t) /Yw(t,x;dx <e®
%)

N\

Figure 1: Consider X and Y convex subsets of R? (d = 2 in the illustration). Let B(0,t) be
the closed ball of radius ¢t > 0 centered at the origin. If the section X + B(0,t) of the light
cone generated by X at a time t is at a distance ¢ from Y, then a particle in X at time 0
will reach Y at time ¢ > 0 with a probability lower than e=2°.

Many works have been devoted to estimating the speed of propagation for quantum
systems in various contexts in the last years. In the eighties and the nineties, propagation
estimates for non-relativistic N-body quantum systems became a central tool in the study
of their scattering theory, in particular for the proof of Asymptotic Completeness of the
wave operators ,,,, see also ﬂg[] for a textbook presentation. Propagation
estimates were next extended to models related to non-relativistic quantum electrodynamics,
again in relation with their scattering theory, e.g. in ,,,. More recently, the maximal
velocity of general non-relativistic two-body quantum systems was estimated in , using a
method based on differential inequalities sometimes called the ASTLO method (Adiabatic
Spacetime Localization Observables). The latter was then refined and successfully applied
in various settings: see ,, for Bose-Hubbard type Hamiltonians in relation
with the celebrated Lieb-Robinson bounds ; see ﬂ§|, for the Lindblad master equation
describing the effective evolution of open quantum systems; see also for the non-linear
Hartree equation describing the effective dynamics of many-body quantum systems. In [31],
a novel method to prove maximal velocity bounds for quantum systems was introduced,
combining a clever conjugation of the quantum evolution by a family of unitary operators
and an analyticity argument. The method was then applied to open quantum systems in [30]
and to quantum lattice gases in . Our approach in this paper is strongly inspired by ,
with some differences that will be detailed below.

Now we describe our main result in precise terms. As usual, for non-autonomous Schrédin-
ger-type equations, given a family of real-valued potentials (V;)cjo,r, the existence of solu-
tions to on the time interval [0,7] is ensured by the existence of a unitary dynam-
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ics (U(t, s))t,scp,r) generated by ((V) + Vi)iecp,r)- Depending on the context, different defini-
tions of unitary dynamics are considered in the literature. In this paper, a unitary dynamics
generated by ((V) + Vi) is defined as a family of unitary operators (U(t,s)):sejo.r]
on L*(R?) such that, for all t,s,r in [0, T], U(t,t) = 1.2, U(t,s)U(s,r) = U(t,r) and

vip € H3(RY),  idU(t,s)p = (V) + V) U(t, s) b, (1.2)

where the equality in the previous equation holds in H~'/2(R%). We refer to the next section
for a more precise and more general definition of unitary dynamics in our setting. To simplify
the notations, we will write U; = U(t,0) and say that (U;):cpo,r) is the propagator generated
by ((V) + Vi)iepo.1-

Let || - ||z2 be the operator norm on L?(R?) and let dist(X,Y) be the distance between
two subsets X and Y of R?. Our main result provides, for any ¢ in [0,77], an estimate on
the norm ||1y U;1x |12y of the unitary propagator generated by ((V) 4 V;).cp,r) composed
with the characteristic functions 1x and 1y of any convex subsets X and Y of R%:

Theorem 1.1. Let T > 0 and (V;)icpo,r) be a family of real-valued potentials such that the
family (Uy)iejo,n) is a propagator generated by ((V)+Vi)icpr. If X andY are convex subsets
of RY, then

Vi€ [0,T], |1yUldx||prz < emastEY), (1.3)

Remark 1.2. We recall that the speed of light and the mass of the particle are equal to 1
in our units. For the relativistic dispersion relation v/ —c2A + m2ct — mc?, instead of ,
our proof gives

||]-YUt1X||B(L2) < emcz(ct—dist(X,Y))_

As mentioned before, Theorem should be interpreted as a maximal velocity estimate
for the propagation of a semi-relativistic quantum particle in the time-dependent external
potential V;. Indeed, if one considers a unit vector 1y in L2(R?) satisfying 1y = 1xyp, then
Theorem yields

11y tellre = |1y U xtbollze < 11y Uplx |l sl 1xtboll e < e~

In other words, if the position of the particle is initially, at time ¢ = 0, localized in X,
then the probability that the particle is in Y at time ¢ > 0 is smaller than e>(t~dist(X.Y),
Therefore the probability that the particle travels faster than the speed of light (equal to
1 in our units) between any convex subsets X and Y of R? is exponentially small. A key
feature of our estimate, compared to previous results, is that it shows that the probability
for the particle, starting in X, to be in a convex region Y outside of the section of the
light cone at time ¢ > 0 (namely Y C R?\ (X + B(0,t))), is exponentially small, more
precisely bounded by e~2° where > 0 is the distance from Y to X + B(0,t). In previous
works (see in particular [31]), the obtained maximal velocity estimates are typically of the
form ||1yUlx|/pr2) < Cwe“(Ct’diSt(X’Y)) for some C,. > 1 and any oo < 1 and ¢ > 1,
without explicit control on C), .. To our knowledge, Theorem is the first result providing
a maximal velocity estimate for a quantum particle in the continuum with such a uniform
control in the distance to the light cone. However, the result in [31] holds for more general
kinetic energy w(—:V), with suitable assumptions on w.
We have the following remark concerning the sharpness of our result:



Remark 1.3. The exponentially small error term in the maximal velocity estimate ([1.3)) is
“sharp” for t < dist(X,Y") in the sense that:

1. If C < 1, there exist convex subsets X and Y such that the estimate
Vt - [O, T] s ||1YUt1X||B(L2) S Cet_diSt(X’Y),

does not hold. This is obvious since, if X N'Y s a subset with a positive Lebesqgue
measure, then || 1yUdx| g2y =1 at t = 0.

2. If ¢ < 1, there exist convexr subsets X and Y and a time-dependent potential V; such
that the estimate

vte[0,T), |1yUlx| sz < get=dist(X.Y)

does not hold. This statement is proven in the case of the free evolution, V; = 0, in

Appendiz|A| (see Corollary .

As in [31] (see also [14]), the idea of the proof of Theorem [1.1]is to construct a suitable
function ¢ such that

Iy ULllsee < Lyl [l U sl x sy . (14)
<exp (—@) < exp(t) <exp (_@)

Our choice of the function ¢ is very similar to that of [14,31]. However, instead of us-
ing an analyticity argument as in [31], we introduce a bounded approximation /. of ¢, for
small € > 0, establish various mapping properties of the transformed kinetic energy oper-
ator e=(®)(V)e %@ and then take the limit ¢ — 0. A careful analysis, using the explicit
form of the pseudo-relativistic kinetic energy, then allows us to reach the “sharp” estimate
3.

Theorem [1.1] can be extended to non necessarily convex subsets X and Y at the price of
losing the sharpness of the exponential decay: an additional multiplicative constant and a
polynomial term in the distance between X and Y appear in the error term.

Corollary 1.4. There exists Cq > 0 such that, if (Vi)icpm, with T > 0, is a family of
real-valued potentials such that (Uy)cor) 45 a propagator generated by ((V) + Vi )ieo,), then,
for any Borel subsets X and Y of R? the bound

vt € [0,7], 11y UiLx|| sz < Cqe ™M) (dist (X, V)4, (1.5)
holds, with (r) = /14 r2.

The error term in (1.5) may be improved, at least if one considers specific subsets X
and Y, e.g. if X is a ball and Y the complement of a larger ball, both centered at the origin.
We do not elaborate here.

Remark 1.5. In a companion paper [5], we estimate the speed of propagation for the non-
linear pseudo-relativistic Hartree equation (the boson star equation). For non-convex sub-
sets X and Y, we show that we can apply Corollary (and Proposition below) with
the “state-dependent” potential Vi = w * |1¢|* under suitable conditions on w and the initial
state ¥y (here w is a suitable convolution potential and 1, is the solution to the pseudo-
relativistic Hartree equation).



Our main results, Theorem and Corollary [I.4] are stated under the assumption
that ((V) + Vi)o<i<r generates a unitary propagator. The following proposition provides
a simple criterion ensuring that this assumption is satisfied.

The space of bounded operators from the Sobolev spaces H'/2(R?) to H~'/2(R?) is de-
noted by B(H'/2, H=*/2) and endowed with the norm

_ 1 1
”BHB(H% - H 2B HB(L2)’
where B(L?) stands for the set of bounded operators on L?(R%). As usual, we will identify

a function V : R? — R and the multiplication operator associated to it. We recall that

the precise notion of unitary propagators that we consider in this paper will be given in
Section 2

Proposition 1.6. Let T > 0. Suppose that, for all t in [0,T], V; : R? — R decomposes
as Vs = Vioy + Vg with Ve in L, Vi, in B(HY?, H-Y/?) and

1. fOT all t in [O,T], ||VB,t”B(H1/2,H*1/2) < 1,
2. supyejo ) | Vool < o0,
3. SUPyefo 1] ||atW||B(H1/2,H—1/2)+Loo <00
Then ((V) 4+ Vi)iejo.r) generates a unitary propagator.

Remark 1.7. The “smallness” condition ||Vp t|| g g1/2,m-1/2) < 1 ensures that for allt in [0, T7,

the operator (V) + V; identifies to a self-adjoint operator with form domain H'Y?, by the
KLMN Theorem. See Section[]] below.

Remark 1.8. Ford > 2, we have L>>* C B(H'/?, H='/?), with L** the usual weak Lebesgue
space. (Recall that a function in L% is identified with the associated multiplication opera-
tor.) Indeed, if V belongs to L, then for all 1) € H/?,

.

by Holder’s inequality and the Sobolev embedding in Lorentz spaces (see e.g. |21, Chapter 2]
for the definition and some properties of Lorentz spaces). The conclusion of Proposition
therefore also holds if we assume that, for all t in [0,T), V; = Vay + Viey with Vg, in L4,
Ve in L and

2d 2~ ||VHLd°°H¢||H1/27

1. for allt in [0,T], ||Varllpae < 1/Kq,
2. SUPyefo 1] Voo tllLee < 00,

3. SUDPye(o,7) 10:Vill oo oo < 00,

with ,
v
Kg:= sup |fRd |¢|| .
verdo(oy IV IIasell¥l%: 2
YeH/?\{0}



Remark 1.9. To prove Pmposition we use an abstract criterion proven in [1] to ensure
the existence of a unitary propagator generated by a family of time-dependent self-adjoint
operators in a Hilbert space. We emphasize that other criteria have been used in the literature,
see e.g. |9, Appendix B.3| or [25] Chapter 5|. Applying these different criteria would give
different classes of admissible potentials for our results to hold, which would neither contain
nor be contained in the class of potentials we obtain in Proposition[1.6. Advantages of using
the criterion of |1 are, first, that we can cover the usual class of time-independent potentials
and second, that the conditions imposed on the potential V; do not involve space derivatives
of V.

Organisation of the Paper. In Section [2] we introduce the notations we will be using, and
we state in precise terms the notion of unitary propagator that we consider. Section [3|presents
the proofs of Theorem and Corollary on maximal velocity estimates. Our proofs are
essentially self-contained, they only rely on standard results which can be found for instance
in [26,127]. Section {4|is devoted to the existence and uniqueness of unitary propagators, in
particular the proof of Proposition . It relies on some previous abstract results from [1]. In
Appendix[A] we justify the “sharpness” of the maximal velocity estimate as mentioned
in Remark [1.3]
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2 Notations and Definitions

We recall that d is the dimension, we will thus always assume that d is in N. The distance
between two subsets X and Y of RY is

dist(X,Y) :=inf{lz —y| |z € X,y € Y}.

For € in R?, (£) := /1 + [£]2 and likewise (V) := /1 — A.

The functional spaces below are spaces of functions from R¢ to C. The Banach space
of (equivalent classes of) Lebesgue square integrable functions is denoted by L% The set
of compactly supported smooth functions is denoted by C3°. The Schwartz class is denoted
by §. The Fourier transform of a tempered distribution ¢ in the dual of the Schwartz
class &’ is denoted by F(i) (recall that we omit the choice of the normalization of the
Fourier transform as it is irrelevant for our purpose). For s in R, H*® is the usual Sobolev
space,

H* == { € §"| F(¢) € Ly, and & — ()" F(¥)(¢) € L7}

and H* is the corresponding homogeneous Sobolev space,
H*:={¢ € §'| F(¢)) € Li,c and € = [ F(v)(6) € L?}.

The set of norm continuous operators from a Banach space V; to a Banach space Vs, is
denoted by B(Vy, Vs). If Vi = Vs we set B(V;) := B(V1, V). The domain and quadratic form
domain of an operator A in a Hilbert space are denoted by D(A) and Q(A), respectively.
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We now specify the notion of unitary propagator that we use here. We consider a compact
interval I of R and a family (A;).e; of self-adjoint operators on L? such that D(4;) N H'/?
is dense in H'/? and the A, are continuously extendable to B(H/2, H='/?),

Definition 2.1. The map I x I > (t,s) — U(t,s) is a unitary propagator associated to
10y = Apy st €1 (2.1)
if and only if
1. U(t,s) is unitary on L? for all t,s in I,
2. U(t,t) =112 forallt in I and U(t,s)U(s,r) = U(t,r) for allt,s,r in I,
3. For all s in I, the map t > I — U(t,s) belongs to
CO(I,B(H?)ge) N CY(I, B(H?, H2)y)

and satisfies

Vt,se 1,V € Hr, idQU(t, s = AU(t, s,
as an equality in H=/2.

In the previous definition, the index “str” indicates that the considered topology is the
strong operator topology. In the sequel we will apply Definition with I = [0,7]. As
mentioned in the introduction, we will use the notation U; = U(¢,0).

Remark 2.2. [t is not difficult to verify that if U(t, s) is a unitary propagator in the sense
of Definition [2.1], then we also have

Vt,se I, Vpe He, iUt s)y=Ul(t,s)Aa).

3 Maximal Velocity Estimates

In this section we prove Theorem [[.I] and Corollary [I.4] Note that if X and Y are such that
dist(X,Y) = 0, then the statements of Theorem and Corollary are obvious. In the
remainder of this section we will therefore assume that dist(X,Y) > 0.

Following the strategy explained in the introduction we aim at proving for a suit-
able function ¢. To reach those estimates, we will need several lemmata. The first one
is a quantitative separation lemma which allows us to introduce the function ¢ satisfying

Eq. (L4).
Lemma 3.1. Let X,Y be two convex subsets of R? such that dist(X,Y) > 0. There exist xg
in RY and a unit vector n in R? such that the affine functional {(z) :=n - (x — x¢) satisfies

1 1
Vee X, ((x)> édist(X, Y) and  VreY, [{(x)< —§dist(X, Y).

Proof. We use the notation é(a, r) for the open ball centered at a and of radius r > 0. The

t
sets Axrzué@’w) and Ay:ZUfG?(x,W)

zeX z€Y



are convex and disjoint, and one can use the separation of disjoint convex sets to get n, xq
in RY |n| = 1 such that ¢(z) = n - (z — x¢) is nonnegative on Ax and nonpositive on Ay-.

By continuity, ¢ is nonnegative on Ax and for all z in X, x — %n is in Ax and thus
dist(X,Y dist(X,Y
(o) = BUXEY) o dSUNY) Y s 0
2 2

dist(X,Y)

5—n lies in Ay. ]

The inequality for x in Y is obtained using that x +

From now on, we consider ¢ as in Lemma [3.1] and for all £ > 0, we introduce a bounded
regularization of ¢ by setting

le() := fo(l(x)) = [e(n - (x = 0)),

where f.(r) = f(er), f belongs to C*°(R), f(r) =ron[—1,1],0 < f' < 1and f’is compactly
supported. We also introduce the notation

2

Vipe =V nfl(l(z),  Aupe= (VEnfi(l(z)"

We recall (see [27]) that a quadratic form @ on L? with form domain Q is called strictly
m-accretive if it closed on Q and there exists 0 < § < 7 such that [Arg Q(¢p, )| < 0 for
all ¢ € Q. By [27, Theorem VIII.16], if @ is strictly m-accretive, there is a unique closed

operator A associated to @), and for all A > 0, we have
1A+ M) s <A

Lemma 3.2. For alle >0 and ¢ > 0, —Ay, . is strictly m-accretive on H' and we have

“[_Ain,s+1+<}_l||B(L2) S <_17 (31)
Hv[ - A:I:n,a +1 + C] _1HB(L2) SJ maX(C_%y C_1)7 (32)
IV = Asne +14¢] 7 V| 545 S max(1,¢7), (3.3)

Proof. Let € >0, ¢ > 0. We compute, for all ¢ and 1 in H*,

<907 [ - Ain,z—: +1+ C}¢>
= (P [ A+ 1+ = FlU2)) ) F (o, [V - nfil(2) + f(C@)n - V]E).

Since 0 < f!/ <1, this implies that

(@ [ = Agne + 1+ ]| S Ml 1]l

and hence —AL, . + 1+ ( is a well-defined quadratic form on H'. Now,

Re(p, [ = Apne +14CJo) = (. [ A+ 1+ (= fL(l)]0) = llellF + Cllellze,

and

I (g, [ = Asne + 1+ ¢Jo)| = (o, [V nfi(llx)) + fi(lx))n - V]e)| < 2]l ol e



The previous two equations imply that the quadratic form —AL, . 4+ 1+ ( is closed on H'.
Moreover, for all ¢ in H?!,

(o[~ Asne+1+CJ0) € {z=A+ipeCA>0, |u <27},
and hence —Ay, . + 1+ ( is strictly m-accretive. By |27, Theorem VIIL.17], we then deduce
that for all ¢’ > 0,
1 B
H[_Ainﬁ_'_l—i_g—i_CI] HB(L2) S(CI) 1.

Since this holds for any ¢ > 0, (3.1]) follows.
To prove (3.2)), it suffices to write, for any ¢ in L?,

V= Asne + 1+ 0.

= ([ A+ 1+ 0 Al = App + 14+ 7Np)
- _<[ - Ai”:f‘: + 1 + <:|_1§07 A:tn,é‘[ - A:I:n,s + 1+ C] _1§0> + Rem.

By (3.1)), the first term is bounded by O(¢')||¢||3. while the “remainder” term satisfies

IRem|| £ ¢TIV = A + 1+ ) ol allellze + 1] = A + 14 ¢] |7

This yields (3.2). To prove the last equation (3.3)), we proceed similarly, first writing the
equation V =V £ nf/({(x)) Fnfl(l(x)) and then using that V £ nfl(¢(x)) commutes with
the resolvent. O

For all £ > 0, we define the operator G, on H' by

1
Ge 1= Im(e“(V)e 1)) = - () (V)e o) — eV (). (3-4)
1

Lemma 3.3. For all ¢ > 0, G. extends to a bounded operator on L?, with

sup ||Ge||(z2) < oo.
e>0

Proof. Using the relation

<V%=llw@*”—G”PA+1+O”)%,

™

on H' (which directly follows from functional calculus), we have, as a quadratic form on H*,

=@ (V)e @ _ o~(@)(7) et @)
1 [ _ -
= ;/ CRI(=Bnet 1407 = (= A +1+Q) 7| dC (35)
0
Here we used the explicit computation e**@VeF-@) = ¥ £ nf/({(z)) = Vi ..
Now we split the integral in the right-hand side of (3.5]) into two parts. For the integral
from 0 to 1, using (3.1)) we directly obtain that

/01 R R R Rl S5 (3.6)

B(L
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uniformly in € > 0. For the integral from 1 to co, we use first the resolvent equation, writing

-1

[~ A1+ = [-A . +1+(]
—2[ = A+ 14 [V nfi ) + L@ - V][ = Ape+14+¢] 7
— OV o[ = A A1+ T @) [ A+ 1+ (]
2/ = A+ 14+ @)= A+ 14 0V (3.7)
The two terms on the right-hand side are estimated in the same way. Consider for instance
the first one. Using again the resolvent equation, we obtain
Ve n[=A e+ 147 f0@)[ - Am+1+d
=V n[ A+ 1+ @) [ -Aa+1+¢]7
Ve n[ = A+ 1+ (FUU) + f(l)n -V + V- nfl(U(x))
[ A4 ][~ A 414
+V e n[ = A+ 1+ U@ [-A+ 1+
(JUE@) + SL(E@)n -V + V- nfl(l@) [~ Aue + 1] (38)

Using in particular (3.1)—(3.3]), it is not difficult to see that the last two terms in the right-
hand side of ([3.8) are O(¢™?), uniformly in . For the first term in the right-hand side

of (3.8), we commute f!(¢(z)) through [ — A+ 1+ (] !, obtaining

~— —

Ve n[—A+14¢]7" ((af))[ A+1+¢]
Vo[- A1+ ;<e<x>>
F Ve[ = A 14 ¢ (V- (V) + (V) - 9) [~ A+ 1+

The second term is O((2) by the same arguments as before. Therefore, combining the
previous expression with (3.8)), we have established that

/w<1/2<[_An,5+1+<]_1 - [_An,s_'_l—i_g}_l) dC

1

:/ <1/2<V_n,8 : n[ —A+1 +q _Qfé(é(x)) — f;(é(x))[— A+1 —|—d _2Vn15 : n> d¢ + R,
1

with |R[/gz2) < 1 uniformly in €. Here the second term in the integral is the contribution
from the term in . Now we can replace the integral from 1 to oo by the integral from 0
to oo up to a uniformly bounded contribution, and then integrate in (, using the explicit
expression

71_2 > 1/2¢ -2
(V) _W/Og (—A+14+¢)“dc¢.

Since
[V ml) @) gy ST [T Ve ]y S 1,

uniformly in €, this concludes the proof of the lemma. O
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For all z in C\ (=00, 0), we write /z = \/[z[e2%78() with —7 < Arg(z) < 7 and for all &

in R?, we set
f(€) == VIg£inP +1= VP £2in- ¢
Lemma 3.4. For all £ in RY, we have
‘Imfi(f)‘ <L

Proof. A direct computation shows that, for all z = A + ip with A\, p in R,

Imy/z = sig\l;(iu)( /NG - )R

Applying this with A = [£]?, u = £2n - £, we obtain

n - ¢

1 4 3 _ 1612\ —
|Imfi(£>|=ﬁ<¢|5| +d(n- €2 —I¢f)F = V2

Since |n - €2 < [€* < 2(VIE[* + 4(n - €)? +|€]%), the result follows.
We define the operator Gy on L? by

Gy = Im(f+(—2'V)) = fIm(er(f))]:_l'
It then follows from Lemma B.4] that

1Gollprzy < 1.

The next lemma shows that Gg is the weak limit of G, (defined in (3.4))) as € — 0.

Lemma 3.5. We have
G, — Gy, e—0,

weakly in B(L?).

Proof. We first show that for all ¢ and ¢ in C§°,

(i, Go) = Im(e" g, (Ve ) = Tm(e" i, (V)e ™" ")),

(VIEFTa(mn-€7 + [€2)>

(3.9)

(3.10)

(3.11)

(3.12)

The second equality is obvious. To prove the first one, let us set p(z) = e""p(x) and,
similarly, ¥ (z) = e7"*1(x). We have ¢, @, 1,1 in C§° and hence the Paley-Wiener Theorem
(see e.g. [26, Theorem IX.11]) implies that the Fourier transforms of these functions are

entire analytic on C?, satisfying, for all integer j in N,

|(F)(2)] < Ca(l+ J2) MmN, 2 e €,

(3.13)

for some R > 0, and likewise for @, 1), ¢. Since in addition F(@)(z) = F(¢)(z + in) and,

similarly, F(¢)(z) = F(¢)(z — in), we can compute
(e, (T 0) = [ FOIET ) (€ Flw)(e - ing
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= [ FHP)E —in) (&) F(¥)(€ —in)dE.

R4

Using analyticity and the decay properties (3.13), we can shift the contour of integration in
the previous integral, obtaining

("o V)e ™) = [ FH@)(E) (€ +in) F(y)(§)dg

Rd

= | F(@)(©) (€ + in) F@)©)dE = (g, f1(—iV)P).

R4

Taking the imaginary part gives .

Now we prove the weak convergence in the statement of the lemma. Let ¢, in L%
Let 0 < 0 < 1 and s, in Cg° be such that ||¢ — @sllzz < 0, || — ¥s||z2 < . Using
Lemma and ||Gol|p(z2) < 1, we have

|<907 Gsw> - <90? G(ﬂb)‘ < ‘<(;067 G€w6> - <()057 Go%ﬂ + C(Sa (314)

uniformly in € > 0. Moreover, we can also write

<€ﬂs(a&)%’ <V>e¢€s(x)¢5> _ <eﬂ(w)%7 <v>€¢€(w)%>
_ <(€:|:Z5(1’) _ e:t((x))gp(s’ <V>63F€s(z)w6> + <<v>e:|:€(x)()06’ (ezFfs(w) _ €$€(x))¢5>,

Since 5,105 € C°, we have |[(V)e @ s 2 < Cs, |[(V)eT=@hps|| 2 < Cs (uniformly in &),
and
(650~ ] 0, s 0, <0

Now, using (3.12)) we can insert this into (3.14]), which yields

limsup | {0, Govb) — (p, Go)| < C6.

e—0

Since 0 > 0 is arbitrary, this concludes the proof. n

We now consider the unitary propagator (Uy)icjo,r) generated by ((V) + Vi)icor) as in
the statement of Theorem [1.1] We first use Lemma [3.3] to show that for any ¢ in [0, 7], the
operator e ‘@ U,e!®) is well-defined and bounded on L?.

Lemma 3.6. Under the assumptions of Theorem for all t in [0,T], we have
Ran(U;e"®) c D(e~“®),
and e~ *@Ue!®) egtends to a bounded operator on L?. Moreover,
e_fg(x)Uteef(:”) — e_e(w)Utef(z) as € — 0,
strongly in B(L?).
Proof. Let ¢ in C3° and € > 0. We compute
||e—es(w)Utees(w)¢Hi2

t
_ HSDH%2+2RG/ <e_£8(I)U76€€(x)Q0, e—Ze(x)(_Z‘HT)UTefs(x)(p>d7—
0

12



t

where in the second equality we used that
Re<e‘é€(””)UTef€(m)g0, e—fe(r)(_Z'V;)eés(r)e—ée(w)UTefe(r)g0> —0.
Since
2Re e @ (—i(V))e'™ = 2Im (e =(V)e™)) = 2G.,

we can rewrite the equality above as
He_zs(x)Utees(x)ngiQ = ||loll32 + 2/t <6_£5(x)UTe£5(z)<p, Gae_es(x)UTege(x)g@dT. (3.15)
0
Now we can use Lemma [3.3] to deduce that
Heffs(z)UteEs(z)(pHiz < ||90H%2 + C/t ”efﬂs(w)UTeés(:v)wH;dT’
0

for some positive constant C' independent of €. Hence, by Gronwall’s inequality,
—t(x (@) ||2
le™ @U@, < gz (3.16)

uniformly in e. By density, this inequality can be extended to any ¢ in L2.
For all ¢ in D(e"®) and 1 in D(e~“®)), using that ||U;|sz2) = 1, we can then write

—l(x T . —le (T e (x 1
(e, Ui @g)]| = lim | (o, eI g)] < A ]

This proves that Ran(U;e®) € D(e~“®)) and that e “®)U,e"®) extends to a bounded oper-
ator on L2
To prove the strong convergence, consider now ¢ in L% Let § > 0 and let ¢; in C5° be
such that [|¢ — @sl|r2 < 0. We write
= (e7®) — ¢~ @) s — e @) (el @) =) _ 1)
+ (7@ — et @U@ (o — 5), (3.17)

and estimate the L?-norm of each term on the right-hand side separately. Using (3.16]), the
third term is bounded by

H (e’e(””)Utee("”) — e’e€(z)UteEf(z))(<p — 905)||L2 < 9, (3.18)

uniformly in € > 0. To estimate the second term, observing that —¢.(x) < max(—/(x),0),
we can bound

e @0, (L@@ 1)),

< || DU (D@ — 1), + [[Ure@ (@D — 1)y

< e g (6

13



for some positive constant C, where we used that e @ U,e“®) belongs to B(L?) and U is
unitary in the second line. Since y; is compactly supported, we deduce from Lebesgue’s
dominated convergence Theorem that

e—ég(a:)U eé(m) eég(m)e—f(z) -1 -0 as —0. 3.19
|| t Ps 12

It remains to estimate the first term on the right-hand side of (3.17)). Since (using the bound
—Ll(z) < max(—{(z),0)) we have

(€7 — e @)Uy @ ps) ()] < 2~ DU Pips| () + [Ure" s (2),
we can apply again Lebesgue’s dominated convergence Theorem to deduce that
H(e‘e(”") - e_&’:(%))Utez(“”)gp(;HL2 —0 as £—0. (3.20)

Putting together (3.17))—(3.20]), we have shown that
lim sup He’e(w)Utee(z)w — e’ef(x)Uteef(x)goHLQ < Cb6.

e—0

Since § > 0 is arbitrary, this concludes the proof. O]
Now we are in position to prove Theorem [I.1]

Proof of Theorem[I.1]. Using Lemmata [3.1] and we can write

11y Uil x|z < 11y e @ |lswelle™ U@ gz e x|l s22) (3.21)
with the following bounds on the terms with the characteristic functions:
< ef%dist(X,Y)’

11y e | (2) le™ @ 1 xlrz) < em7 0, (3.22)

Thus it remains to estimate the norm of e “®U;e/®). Using Lemmata , and , we
can pass to the limit ¢ — 0 in (3.15]), yielding

t
e o 2 —l(x T —l(x x
||e “@) 1, e )g0HL2 = [lp|32 +2/ (e @@y Goe @y, )90>d7'. (3.23)
0
Since ||Gol|p(z2) < 1 by (3.11), we deduce that
t
le= @0 | < Il +2 / e @0, 2 dr.
0

Gronwall’s Lemma then yields

e @ U D7, < €] 2.

Therefore
He—é(m)Utef(:v)”B(LQ) < e (3.24)
Putting together (3.21)), (3.22) and ({3.24]) concludes the proof of the theorem. ]

Now we prove Corollary for non necessarily convex subsets X and Y.

14



Proof of Corollary|[1.4. Without loss of generality one can assume that dist(X Y) > +/d, by

taking C,; such that C’de*‘/a > 1. Let 7 in (0, dlsg(%] With @, = Z—I—T[ > 2) for z in R?,

we set
Zx ={2€ ()| Q.NX #0}, and Zy ={z€ (rZ)*|Q.NY #0}.
Then X C X, = ez, Q- and Y CY, :UyEZy Qy S0

1y Ulx|lsrey = sup [(1yg,Udxf)| < sup [(ly,g,Utlx, f)].
If1l2=1 If1l2=1
lgll ;=1 lgll ;=1

Using the triangle inequality, the Cauchy-Schwarz inequality, and Theorem we obtain

(Ly,g.Ulx, /) < Y (10,9, Ule. )] < D II1g,gllzze™ @ 9)||1g, f12 .

TELx TELx
YyELy yEly

For z in Zy and y in Zy, the distance between @, and @, is larger than |z — y| — rd
and dist(X,Y) — rv/d < |z — y|, so we can rewrite the sums so that a convolution product
n (rZ)? appears, and one can use the Holder and Young inequalities:

’<1Yr97 Ut1XTf>| < €t+r\/a Z ||1Qy9HL2 6|x—y|2dist(X,Y)—r\/E 6_‘I_y‘||1sz||L2
z,y€e(rz)e

etHﬂ HleQHEEJ((rZ)d;L?) H5|z\2dist(x,y)—m/a el H@((TZ)d;R) Hlefueg((rZ)d;L?)

< etV 1911221102 > distx.vy /- va e Moo flle

It remains to estimate K(X,Y,r) = er\/a||6|z\2dist(X,Y)/r—\/a e "y (zar). For the sake of
shortness, the letter R denotes w — /d, and with our assumption on r, R > v/d. We

have N
K<X> Y7 T) = er\/g Z €_T|Z‘ S GT\/E Z Z e—r(m—i—l)R

z‘eZd m=0 (m+1)R<|z|<(m+2)R
|z|>R

As all the unit cubes with center z in the shell (m + 1)R < |2/| < (m + 2)R are included in
the shell (m + 1/2)R < |Z'| < (m + 5/2)R, it holds

K(X7 Y7 T) r\f Z QRwd m + 5/2) )d 1 7T(m+1)R

m=0
< CyeVie R RY Z(m +d—1)---(m+1)(e )™
m=0

An elementary computation yields, for |z| < 1,

- . 1)!

and thus

1

< rVd rVd—dist(X)Y) pd
K<X7 }/7 T) ~d € € R (1 . er\/a—dist(X,Y))d

15



<d 2r\/3 —dist(X,Y (dlSt(X Y) \/E)d 1

~ r (1— er\/&—dist(x,y))d
< | p2rVd —dist(X,Y) L (dist(X,Y) —rvd)*
~d rd (1 — erva—dist(X.Y))d

1
< 2V —dist(XY) (1 +dist(X,Y) — rv/d)".

Y

Since we can assume dist(X,Y") > Vd, as remarked above, we choose r = % and we get:
K(X,Y,r) <g e 8 (qist (X, V)¢,

which yields the result. O

4 Unitary propagators

In this section we prove Proposition giving a sufficient criterion on (V;)icpo,m for the
family ((V) 4+ Vi)icpp,m) to generate a unitary propagator. We use in particular the following
result proved in 1 Appendix C] (the following proposition is stated in an abstract setting
in [1]; to simplify the presentation we only consider a particular case in the L? setting, which
is sufficient for our purpose).

Proposition 4.1 (Corollary C.4 in [1]). Let I C R be a closed interval and let {(S¢)ier, S}
be a family of self-adjoint operators on L* such that:

e S>1and forallt inl, S;>1,
o for allt in I, D(S}"*) = D(SV?).

Let (Ay)wer be a family of symmetric bounded operators in B(HY?, H='/?) satisfying:
o tc s A, € B(HY? H™Y?) is continuous.

Assume that there exists a continuous function f : I — [0,00) such that for any t in I, we
have:

(i) for any ¢ € D(S 1/2)
04, Sy 12| < F(0) 1182013 5

(i) for any ¢, € D(S 3/2)

(S, Aud) 1z — (Auth, Si0) 2] < F(0) 1Sy lln 11576 2.

Then the non-autonomous Cauchy problem (2.1)) admits a unique unitary propagator U (t, s).
Moreover, we have

t
IS0t sl <exp(2] [ rrar]) ISV ol Vesel.

In addition, if there exist c1,co > 0 such that ¢,S < S(t) < ¢S for all t in I, then there
exists ¢ > 0 such that

t
HU(t,s)HB(Hl/z)Scexp(?}/f(T)dT‘>7 Visel.
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We also recall a theorem |26, Theorem X.17|, due to Kato, Lions, Lax, Milgram, and
Nelson:

Theorem 4.2 (KLMN Theorem). Let S be a positive self-adjoint operator on a Hilbert space
and suppose that q(p,v) is a symmetric quadratic form on Q(S) such that there exist a
in [0,1), b in R verifying

Vi € D(S), (e, @)l < afp, Sp) +b{e, ¢) . (4.1)
Then there ezists a unique self-adjoint operator A with Q(A) = Q(S) and
Vo, € Q(A), (¢, AY) = (p,5Y¢) + (v, 7). (4.2)

The operator A is bounded from below by —b and any domain of self-adjointness for S is a
form core for A.

As we use the definition of unitary propagator given in 1, Appendix C] with the Hilbert
rigging HY? ¢ L? ¢ H'/2, the KLMN theorem and Proposition yield the following
theorem for the existence of a unitary propagator.

Proposition 4.3. Let I C R be a closed interval and let (q:(p,¥))ier be a family of sym-
metric quadratic forms on H'Y? such that, for all t in I, there exist a, in [0,1), b, in R
with )

Voe Hz, a(p, o) < allelin. +bllelz: . (4.3)

For each such g, let A, be the corresponding self-adjoint operator on L? obtained through the
KLMN theorem with S = (V). Suppose furthermore that

® sup,; by < oo and

e for all p in H'?, t = q,(¢p, ¢) is differentiable on I, with

su? 10vq1 (0, 0)| < 0. (4.4)
te

llell 1/2=1
Then the Cauchy problem (2.1) admits a unique unitary propagator U(t,s).

Proof. To show that the non-autonomous Cauchy problem (2.1)) has a unique solution, we
apply Proposition [£.1] with:

e S=(V)
o Sy =A+Cy with Cy =1+ sup,c; b
o f(t) =sup{|Osqs(p. @)| | s € I, [l /2 = 1}

We first remark that S = (V) > 1 and for all ¢ € H'/2 such that |¢|z2 = 1,

(0, S1p) 12 = (@, Ayp) 2 + Ca
= (0, (V)o)r2 + qe(p, ) + Ca
> (1 —a){p,(V)p)rze — b+ Cy > 1,
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since Uy = 1 + sup,c; 0 and a; < 1 for all ¢ in I. Hence Sy > 1 for all ¢ in I, and
we have in addition that D(S)/%) = Q(S,) = H'? = D(5?). Moreover the assumption
on the differentiability of ¢ — ¢, implies that the operators A, extend to operators A, in
B(H'?, H='/2) which depend continuously on ¢ in the operator norm topology. For all

¢ € H'? using (4.4) we have,

100, Sip) 12| = |0iae (0, 0)| < () < FO)]S ]2,

since S; > 1. Finally, the bound on the commutator is obvious since A; and S; = A; + Cy
commute. O

Proposition 4.3| allows us to consider propagators generated by family of operators of the
form (<V> + W)te[O,T]'

Proof of Proposition[1.6, Let I = [0,T]. The first hypothesis on V; in the statement of
Proposition [I.6] readily implies that, for all ¢ € I,

< a, (1, (V)U) + by (¥, 1), (4.5)

went, | [ wPv
R4

with a; = ||Vl gar/2, m-1/2) and by = [|[Vie ¢ L. Using in addition the other hypotheses in
the statement of Proposition [1.6} it is clear that the quadratic form

alp) = [ oViv (4.6)
R
satisfies the assumptions of Proposition [£.3] This shows Proposition [1.6] O

A Sharpness of the maximal velocity estimate for con-
vex subsets

In this appendix we justify the “sharpness” of the maximal velocity estimate proven in
Theorem [I.T] in the sense given in Remark [I.3] We begin with the following proposition.

Proposition A.1. Let 0 < < 1, ¢ > 0. There ezists Cs. > 0 such that, for allt > 0, there
exist two conver subsets X, Y C RY satisfying dist(X,Y) = §t and

. C
HlYe_ZtWHX“B(B) >1l—e- ?a‘

Proof. Let 0 < § < 1. Introducing the notation ©; := —id,,(V)~!, where z; stands for the
first variable in R¢, we note that

et Ve V) = 1, + 1O, (A.1)

Since the spectrum of ©; is ¢(©) = [—1, 1], we can consider @5 € L?, ||¢s]/z2 = 1, such that

L1 (146),1)(©1)s = @s. (A.2)

Now let € > 0 and fix R;. such that
€
[ 1jzy)>Rs 05l < > (A.3)
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Let ¢t > 0 and choose
X = Xé,a = {751 < R5,E}a Y = Y;S,a,t = {xl > R5,5 + 5t}

Let f be asmooth function such that supp(f) C (0,00),0 < f < land f =1on[3(1-6),00).
We first write

L A R —1
e N Hl[o"°)< 7 ;6_5> " 1XHB(L2>

X1 R(Sa _
== 0)e el = (7
t t X B(L?) / +61 -

R55
c )1 H (A4
t > X B(L?) ( )

Where in the last equality we used the unitarity of e=*V) and the explicit formula (A.T)).
Next | and the fact that 0 < f <1 give

Ry
;’ B 5) 1[_R5767R6,e](1’1)<ﬂ6 + Reml,

f(%‘i‘@l_ >1X805:f<%+@1—
with ||[Remy||z2 < %

Let F' be an almost analytic extension of f. This means that F' belongs to C*°(C),
Flg = f, supp(F) C {z € C||Im(z)| < C(Re(z))} for some C > 0 and, for all n in N,
12E(2)] < CylIm(2)["(Re(z)) ™!, with C, > 0. Since f does not decay at co, we cannot
directly use the Helffer-Sjostrand representation. We therefore introduce an artificial cutoft:
Let nin Cg°(RR; [0, 1]) such that n = 1 near 0 and, for A > 0, let 95 (-) = n(-/A). Let 77in C§°(C)
be an almost analytic extension of n and 75 (-) = 7(-/A). Define fy = fnx and Fy = Fij,. In
particular F satisfies |22 (2)| < C,|Im(2)["(Re(z)) "', uniformly in A > 1. We can then
write (see e.g. |9])

fA(ﬂ AT

o 6FA T 8, —lx; — Ré,s -1
== & ——(z )( + O — r - Z) f(gl — 0 — z)  "dRe(z)dIm(2)
_ aFA X R57g -1 121 — Ré,a
~ o oz —- (2 )( + 0 — P 0 — Z) (01 — 0 —z)7 ———=—dRe(z)dIm(2)
OF, Rs. -1 _ _
+— a_A(z)(‘JC1 +6, - = —5—2) (©1 =6 — 2) a1, 0,](O1 — § — 2)7!
dRe(z)dIm(z).

Using the bound on %if‘ and the fact that the commutator [x;,©;] is bounded, we then
obtain

Rse
fA( +6: - t& - 6) 1[—Ra,s,Ra,s]<5U1) = fA(@l - 5)1[—36,57135,5](%1) + Remo,

CRs e

with [|[Remyl|z2) < ===, where C' > 0 does not depend on d,¢,t, A. Using (A.3), we can

then rewrite

fa(©1 = 0) LR, R (¥1) 05 = fa(O1 — )ps + Rems,
with [[Rems||z2 < 5, uniformly in A > 1. Letting A — oo yields

(01 = )1y s (21) 05 — F(O1 — O)eps 1» < [ Rems]|Le.

19



Finally, since f =1 on [$(1 — §),00), we deduce from (A.2)) that

f(©1—0)ps = ¢s.

Putting all together, we have shown that

x R(Sa OR55
RS P < A
Hf<t+1 t XA =TT T
Since ||¢s]|z2 = 1, this concludes the proof of the proposition. O

Corollary A.2. Let 0 < 6§ < 1. There existt > 0, and X and Y convex subsets of R? such
that

||1Y6_it<v)1X||B(L2) > eét—dist(X,Y)'

Proof. Let 6 = (64 1)/2 and ¢ in (0,1). Applying Proposition we deduce that for some
constant C’g’g > 0, for all £ > 0 there exist two convex sets Xj;_ and Yj_, such that the

equality dist(X; _, Y5, ) = 6t holds, and

1y, e 0k

d,e,t

V>1X37€||B(L2) Z 1—e—

Thus for ¢ larger that some T5_ >0,

—it( St pOt—dist(X; Y5 )

Y, s > e e

Y

H 1Y5,s,te

which is the result. O

References
[1] Z. Ammari and S. Breteaux, Propagation of chaos for many-boson systems in one dimension with a
point pair-interaction, Asymptotic Anal. 76 (2012), no. 3-4, 123-170.

[2] J. Arbunich, J. Faupin, F. Pusateri, and I. M. Sigal, Mazimal speed of quantum propagation for the
Hartree equation, Comm. Partial Differential Equations 48 (2023), no. 4, 542-575.

[3] J. Arbunich, F. Pusateri, I. M. Sigal, and A. Soffer, Mazimal speed of quantum propagation, Letters in
Mathematical Physics 111 (2021), no. 3.

[4] J.-F. Bony, J. Faupin, and I. M. Sigal, Mazimal velocity of photons in non-relativistic QED, Adv. Math.
231 (2012), no. 5, 3054-3078.

[5] S. Breteaux, J. Faupin, and V. Grasselli, Propagation estimates for the boson star equation, arXiv (2025).

[6] S. Breteaux, J. Faupin, M. Lemm, D. H. Ou Yang, I. M. Sigal, and J. Zhang, Light cones for open
quantum systems in the continuum, Rev. Math. Phys. 36 (2024), no. 9, Paper No. 2460004, 49.

[7] S. Breteaux, J. Faupin, M. Lemm, and I. M. Sigal, Mazimal speed of propagation in open quantum
systems, The physics and mathematics of Elliott Lieb—the 90th anniversary. Vol. I, 2022, pp. 109-130.

[8] J. Dereziniski, Asymptotic completeness of long-range N-body quantum systems, Ann. Math. (2) 138
(1993), no. 2, 427-476.

[9] J. Derezinski and C. Gérard, Scattering theory of classical and quantum N -particle systems, Texts and
Monographs in Physics, Springer-Verlag, Berlin, 1997.

[10] J. Dereziniski and C. Gérard, Asymptotic completeness in quantum field theory. Massive Pauli-Fierz
Hamiltonians, Rev. Math. Phys. 11 (1999), no. 4, 383-450.

20



[11]
[12]

[13]

V. Enss, Propagation properties of quantum scattering states, J. Funct. Anal. 52 (1983), no. 2, 219-251.

J. Faupin, M. Lemm, and I. M. Sigal, Mazimal speed for macroscopic particle transport in the Bose-
Hubbard model, Phys. Rev. Lett. 128 (2022), no. 15, Paper No. 150602, 6.

, On Lieb-Robinson bounds for the bose-Hubbard model, Comm. Math. Phys. 394 (2022), no. 3,
1011-1037.

J. Faupin, M. Lemm, I. M. Sigal, and J. Zhang, Macroscopic suppression of supersonic quantum trans-
port, Phys. Rev. Lett. 135 (2025), 160405.

J. Faupin and I. M. Sigal, Minimal photon velocity bounds in non-relativistic quantum electrodynamics,
J. Stat. Phys. 154 (2014), no. 1-2, 58-90.

J. Frohlich, M. Griesemer, and B. Schlein, Asymptotic completeness for Rayleigh scattering, Ann. Henri
Poincaré 3 (2002), no. 1, 107-170.

C. Gérard, Sharp propagation estimates for N-particle systems, Duke Math. J. 67 (1992), no. 3, 483—
515.

G. M. Graf, Asymptotic completeness for N-body short-range quantum systems: A new proof, Commun.
Math. Phys. 132 (1990), 73-101.

W. Hunziker, I. M. Sigal, and A. Soffer, Minimal escape velocities, Comm. Partial Differential Equations
24 (1999), no. 11-12, 2279-2295.

T. Kuwahara, M. Lemm, and C. Rubiliani, A ballistic upper bound on the accumulation of bosonic
on-site energies, arXiv:2511.07558 (2025).

P. G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, Chapman Hall/CRC Res.
Notes Math., vol. 431, Boca Raton, FL: Chapman & Hall/CRC, 2002.

M. Lemm, C. Rubiliani, and J. Zhang, On the microscopic propagation speed of long-range quantum
many-body systems, arXiv:2310.14896 (2023).

, On the quantum dynamics of long-ranged Bose-Hubbard hamiltonians, arXiv:2505.01786 (2025).

E.H. Lieb and D.W. Robinson, The finite group velocity of quantum spin systems, Commun. Math.
Phys. 28 (1972), 251-257.

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Math-
ematical Sciences, vol. 44, Springer-Verlag, New York, 1983.

M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness,
Elsevier Science, 1975.

, Methods of modern mathematical physics. I. Functional analysis, Second edition, Academic
Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.

I. M. Sigal and A. Soffer, Local decay and propagation estimates for time- dependent and time-
independent hamiltonians, Prepint, Princeton Univ. (1988).

, Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials, Invent.
Math. 99 (1990), no. 1, 115-143.

I. M. Sigal and X. Wu, On light cone bounds in quantum open systems, arXiv:2503.20635 (2025).

, On propagation of information in quantum mechanics and mazximal velocity bounds, Lett. Math.

Phys. 115 (2025), no. 1, Paper No. 17, 25.

E. Skibsted, Propagation estimates for N-body Schrédinger operators, Comm. Math. Phys. 142 (1991),
no. 1, 67-98.

This work is licensed under a Creative Commons “Attribution @ @

4.0 International”| license.

21


https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

	Introduction
	Notations and Definitions
	Maximal Velocity Estimates
	Unitary propagators
	Sharpness of the maximal velocity estimate for convex subsets

