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Abstract

We establish a maximal velocity bound for a pseudo-relativistic quantum particle
in an external time-dependent potential. Our estimate shows that the probability for
the particle, starting in a convex set X ⊂ Rd at t = 0, to reach a convex set Y ⊂ Rd
at a time t > 0, is bounded by e−2δ where δ is the distance from Y to the section at
time t of the light cone generated by X.

1 Introduction

We consider a pseudo-relativistic quantum particle placed in a time-dependent external po-
tential Vt, in dimension d ≥ 1. In units such that the Planck constant and the velocity of
light are equal to 1, the dynamics of the particle is given by the linear pseudo-relativistic (or
semi-relativistic) Schrödinger equation{

i∂tψt =
(√

−∆+m2 −m+ Vt
)
ψt

ψt=0 = ψ0,

in Rd, wherem > 0 is the mass of the particle. For all t ≥ 0, Vt : Rd → R is a time-dependent
real-valued potential representing the external forces applied to the particle, and the kinetic
energy

√
−∆+m2 −m is the Fourier multiplier defined by

√
−∆+m2 −m = F−1

(√
|ξ|2 +m2 −m

)
F .

Here and it what follows, F stands for the usual Fourier transform (we omit the choice of
the normalization of the Fourier transform as it is irrelevant for our purpose). To simplify
the exposition, we drop the constant mass term, which will have no influence on our results,
and we take m = 1. The main equation studied in this paper is therefore{

i∂tψt = (⟨∇⟩+ Vt)ψt, ⟨∇⟩ :=
√
1−∆,

ψt=0 = ψ0.
(1.1)
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We will assume that the initial state ψ0 belongs to the Sobolev space H1/2(Rd).
Our main concern is the estimate of the speed of propagation of solutions to (1.1). More

precisely, we aim at establishing a maximal velocity bound, showing that the probability
that a quantum particle whose dynamics is described by (1.1) travels faster than the speed
of light is exponentially small as illustrated intuitively in Fig. 1. This will be made more
precise in the statements below.

Figure 1: Consider X and Y convex subsets of Rd (d = 2 in the illustration). Let B(0, t) be
the closed ball of radius t > 0 centered at the origin. If the section X + B(0, t) of the light
cone generated by X at a time t is at a distance δ from Y , then a particle in X at time 0
will reach Y at time t > 0 with a probability lower than e−2δ.

Many works have been devoted to estimating the speed of propagation for quantum
systems in various contexts in the last years. In the eighties and the nineties, propagation
estimates for non-relativistic N -body quantum systems became a central tool in the study
of their scattering theory, in particular for the proof of Asymptotic Completeness of the
wave operators [8,11,17–19,28,29,32], see also [9] for a textbook presentation. Propagation
estimates were next extended to models related to non-relativistic quantum electrodynamics,
again in relation with their scattering theory, e.g. in [4,10,15,16]. More recently, the maximal
velocity of general non-relativistic two-body quantum systems was estimated in [3], using a
method based on differential inequalities sometimes called the ASTLO method (Adiabatic
Spacetime Localization Observables). The latter was then refined and successfully applied
in various settings: see [12, 13, 20, 22, 23] for Bose-Hubbard type Hamiltonians in relation
with the celebrated Lieb-Robinson bounds [24]; see [6, 7] for the Lindblad master equation
describing the effective evolution of open quantum systems; see also [2] for the non-linear
Hartree equation describing the effective dynamics of many-body quantum systems. In [31],
a novel method to prove maximal velocity bounds for quantum systems was introduced,
combining a clever conjugation of the quantum evolution by a family of unitary operators
and an analyticity argument. The method was then applied to open quantum systems in [30]
and to quantum lattice gases in [14]. Our approach in this paper is strongly inspired by [31],
with some differences that will be detailed below.

Now we describe our main result in precise terms. As usual, for non-autonomous Schrödin-
ger-type equations, given a family of real-valued potentials (Vt)t∈[0,T ], the existence of solu-
tions to (1.1) on the time interval [0, T ] is ensured by the existence of a unitary dynam-
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ics (U(t, s))t,s∈[0,T ] generated by (⟨∇⟩+Vt)t∈[0,T ]. Depending on the context, different defini-
tions of unitary dynamics are considered in the literature. In this paper, a unitary dynamics
generated by (⟨∇⟩ + Vt)t∈[0,T ] is defined as a family of unitary operators (U(t, s))t,s∈[0,T ]
on L2(Rd) such that, for all t, s, r in [0, T ], U(t, t) = 1L2 , U(t, s)U(s, r) = U(t, r) and

∀ψ ∈ H
1
2 (Rd), i∂tU(t, s)ψ = (⟨∇⟩+ Vt)U(t, s)ψ, (1.2)

where the equality in the previous equation holds in H−1/2(Rd). We refer to the next section
for a more precise and more general definition of unitary dynamics in our setting. To simplify
the notations, we will write Ut = U(t, 0) and say that (Ut)t∈[0,T ] is the propagator generated
by (⟨∇⟩+ Vt)t∈[0,T ].

Let ∥ · ∥L2 be the operator norm on L2(Rd) and let dist(X,Y ) be the distance between
two subsets X and Y of Rd. Our main result provides, for any t in [0, T ], an estimate on
the norm ∥1YUt1X∥B(L2) of the unitary propagator generated by (⟨∇⟩+ Vt)t∈[0,T ] composed
with the characteristic functions 1X and 1Y of any convex subsets X and Y of Rd:

Theorem 1.1. Let T > 0 and (Vt)t∈[0,T ] be a family of real-valued potentials such that the
family (Ut)t∈[0,T ] is a propagator generated by (⟨∇⟩+Vt)t∈[0,T ]. If X and Y are convex subsets
of Rd, then

∀t ∈ [0, T ] , ∥1YUt1X∥B(L2) ≤ et−dist(X,Y ). (1.3)

Remark 1.2. We recall that the speed of light and the mass of the particle are equal to 1
in our units. For the relativistic dispersion relation

√
−c2∆+m2c4 −mc2, instead of (1.3),

our proof gives
∥1YUt1X∥B(L2) ≤ emc

2(ct−dist(X,Y )).

As mentioned before, Theorem 1.1 should be interpreted as a maximal velocity estimate
for the propagation of a semi-relativistic quantum particle in the time-dependent external
potential Vt. Indeed, if one considers a unit vector ψ0 in L2(Rd) satisfying ψ0 = 1Xψ0, then
Theorem 1.1 yields

∥1Y ψt∥L2 = ∥1YUt1Xψ0∥L2 ≤ ∥1YUt1X∥B(L2)∥1Xψ0∥L2 ≤ et−dist(X,Y ) .

In other words, if the position of the particle is initially, at time t = 0, localized in X,
then the probability that the particle is in Y at time t > 0 is smaller than e2(t−dist(X,Y )).
Therefore the probability that the particle travels faster than the speed of light (equal to
1 in our units) between any convex subsets X and Y of Rd is exponentially small. A key
feature of our estimate, compared to previous results, is that it shows that the probability
for the particle, starting in X, to be in a convex region Y outside of the section of the
light cone at time t > 0 (namely Y ⊂ Rd \ (X + B(0, t))), is exponentially small, more
precisely bounded by e−2δ where δ > 0 is the distance from Y to X + B(0, t). In previous
works (see in particular [31]), the obtained maximal velocity estimates are typically of the
form ∥1YUt1X∥B(L2) ≤ Cµ,ce

µ(ct−dist(X,Y )) for some Cµ,c > 1 and any µ < 1 and c > 1,
without explicit control on Cµ,c. To our knowledge, Theorem 1.1 is the first result providing
a maximal velocity estimate for a quantum particle in the continuum with such a uniform
control in the distance to the light cone. However, the result in [31] holds for more general
kinetic energy ω(−i∇), with suitable assumptions on ω.

We have the following remark concerning the sharpness of our result:
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Remark 1.3. The exponentially small error term in the maximal velocity estimate (1.3) is
“sharp” for t ≤ dist(X,Y ) in the sense that:

1. If C < 1, there exist convex subsets X and Y such that the estimate

∀t ∈ [0, T ] , ∥1YUt1X∥B(L2) ≤ Cet−dist(X,Y ),

does not hold. This is obvious since, if X ∩ Y is a subset with a positive Lebesgue
measure, then ∥1YUt1X∥B(L2) = 1 at t = 0.

2. If c < 1, there exist convex subsets X and Y and a time-dependent potential Vt such
that the estimate

∀t ∈ [0, T ] , ∥1YUt1X∥B(L2) ≤ ect−dist(X,Y ),

does not hold. This statement is proven in the case of the free evolution, Vt = 0, in
Appendix A (see Corollary A.2).

As in [31] (see also [14]), the idea of the proof of Theorem 1.1 is to construct a suitable
function ℓ such that

∥1YUt1X∥B(L2) ≤ ∥1Y eℓ(x)∥B(L2)︸ ︷︷ ︸
≤ exp

(
−dist(X,Y )

2

) ∥e−ℓ(x)Uteℓ(x)∥B(L2)︸ ︷︷ ︸
≤ exp(t)

∥e−ℓ(x)1X∥B(L2)︸ ︷︷ ︸
≤ exp

(
−dist(X,Y )

2

) . (1.4)

Our choice of the function ℓ is very similar to that of [14, 31]. However, instead of us-
ing an analyticity argument as in [31], we introduce a bounded approximation ℓε of ℓ, for
small ε > 0, establish various mapping properties of the transformed kinetic energy oper-
ator eℓε(x)⟨∇⟩e−ℓε(x), and then take the limit ε → 0. A careful analysis, using the explicit
form of the pseudo-relativistic kinetic energy, then allows us to reach the “sharp” estimate
(1.3).

Theorem 1.1 can be extended to non necessarily convex subsets X and Y at the price of
losing the sharpness of the exponential decay: an additional multiplicative constant and a
polynomial term in the distance between X and Y appear in the error term.

Corollary 1.4. There exists Cd > 0 such that, if (Vt)t∈[0,T ], with T > 0, is a family of
real-valued potentials such that (Ut)t∈[0,T ] is a propagator generated by (⟨∇⟩+Vt)t∈[0,T ], then,
for any Borel subsets X and Y of Rd the bound

∀t ∈ [0, T ] , ∥1YUt1X∥B(L2) ≤ Cd e
t−dist(X,Y ) ⟨dist(X, Y )⟩d , (1.5)

holds, with ⟨r⟩ =
√
1 + r2.

The error term in (1.5) may be improved, at least if one considers specific subsets X
and Y , e.g. if X is a ball and Y the complement of a larger ball, both centered at the origin.
We do not elaborate here.

Remark 1.5. In a companion paper [5], we estimate the speed of propagation for the non-
linear pseudo-relativistic Hartree equation (the boson star equation). For non-convex sub-
sets X and Y , we show that we can apply Corollary 1.4 (and Proposition 1.6 below) with
the “state-dependent” potential Vt = w ∗ |ψt|2 under suitable conditions on w and the initial
state ψ0 (here w is a suitable convolution potential and ψt is the solution to the pseudo-
relativistic Hartree equation).
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Our main results, Theorem 1.1 and Corollary 1.4, are stated under the assumption
that (⟨∇⟩ + Vt)0≤t≤T generates a unitary propagator. The following proposition provides
a simple criterion ensuring that this assumption is satisfied.

The space of bounded operators from the Sobolev spaces H1/2(Rd) to H−1/2(Rd) is de-
noted by B(H1/2, H−1/2) and endowed with the norm

∥B∥
B(H

1
2 ,H− 1

2 )
:=

∥∥⟨∇⟩−
1
2B⟨∇⟩−

1
2

∥∥
B(L2)

,

where B(L2) stands for the set of bounded operators on L2(Rd). As usual, we will identify
a function V : Rd → R and the multiplication operator associated to it. We recall that
the precise notion of unitary propagators that we consider in this paper will be given in
Section 2.

Proposition 1.6. Let T > 0. Suppose that, for all t in [0, T ], Vt : Rd → R decomposes
as Vt = V∞,t + VB,t with V∞,t in L

∞, VB,t in B(H1/2, H−1/2) and

1. for all t in [0, T ], ∥VB,t∥B(H1/2,H−1/2) < 1 ,

2. supt∈[0,T ] ∥V∞,t∥L∞ <∞ ,

3. supt∈[0,T ] ∥∂tVt∥B(H1/2,H−1/2)+L∞ <∞ .

Then (⟨∇⟩+ Vt)t∈[0,T ] generates a unitary propagator.

Remark 1.7. The “smallness” condition ∥VB,t∥B(H1/2,H−1/2) < 1 ensures that for all t in [0, T ],

the operator ⟨∇⟩ + Vt identifies to a self-adjoint operator with form domain H1/2, by the
KLMN Theorem. See Section 4 below.

Remark 1.8. For d ≥ 2, we have Ld,∞ ⊂ B(H1/2, H−1/2), with Ld,∞ the usual weak Lebesgue
space. (Recall that a function in Ld,∞ is identified with the associated multiplication opera-
tor.) Indeed, if V belongs to Ld,∞, then for all ψ ∈ Ḣ1/2,∣∣∣ˆ

Rd

V |ψ|2
∣∣∣ ≲ ∥V ∥Ld,∞∥ψ∥2

L
2d
d−1

,2
≲ ∥V ∥Ld,∞∥ψ∥2

Ḣ1/2 ,

by Hölder’s inequality and the Sobolev embedding in Lorentz spaces (see e.g. [21, Chapter 2]
for the definition and some properties of Lorentz spaces). The conclusion of Proposition 1.6
therefore also holds if we assume that, for all t in [0, T ], Vt = Vd,t + V∞,t with Vd,t in Ld,∞,
V∞ in L∞ and

1. for all t in [0, T ], ∥Vd,t∥Ld,∞ < 1/Kd ,

2. supt∈[0,T ] ∥V∞,t∥L∞ <∞ ,

3. supt∈[0,T ] ∥∂tVt∥Ld,∞+L∞ <∞ ,

with

Kd := sup
V ∈Ld,∞\{0}
ψ∈Ḣ1/2\{0}

∣∣ ´
Rd V |ψ|2

∣∣
∥V ∥Ld,∞∥ψ∥2

Ḣ1/2

.
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Remark 1.9. To prove Proposition 1.6, we use an abstract criterion proven in [1] to ensure
the existence of a unitary propagator generated by a family of time-dependent self-adjoint
operators in a Hilbert space. We emphasize that other criteria have been used in the literature,
see e.g. [9, Appendix B.3] or [25, Chapter 5]. Applying these different criteria would give
different classes of admissible potentials for our results to hold, which would neither contain
nor be contained in the class of potentials we obtain in Proposition 1.6. Advantages of using
the criterion of [1] are, first, that we can cover the usual class of time-independent potentials
and second, that the conditions imposed on the potential Vt do not involve space derivatives
of Vt.

Organisation of the Paper. In Section 2 we introduce the notations we will be using, and
we state in precise terms the notion of unitary propagator that we consider. Section 3 presents
the proofs of Theorem 1.1 and Corollary 1.4 on maximal velocity estimates. Our proofs are
essentially self-contained, they only rely on standard results which can be found for instance
in [26, 27]. Section 4 is devoted to the existence and uniqueness of unitary propagators, in
particular the proof of Proposition 1.6. It relies on some previous abstract results from [1]. In
Appendix A, we justify the “sharpness” of the maximal velocity estimate (1.3) as mentioned
in Remark 1.3.
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2 Notations and Definitions

We recall that d is the dimension, we will thus always assume that d is in N. The distance
between two subsets X and Y of Rd is

dist(X, Y ) := inf{|x− y| | x ∈ X, y ∈ Y }.

For ξ in Rd, ⟨ξ⟩ :=
√

1 + |ξ|2 and likewise ⟨∇⟩ :=
√
1−∆.

The functional spaces below are spaces of functions from Rd to C. The Banach space
of (equivalent classes of) Lebesgue square integrable functions is denoted by L2. The set
of compactly supported smooth functions is denoted by C∞

0 . The Schwartz class is denoted
by S. The Fourier transform of a tempered distribution ψ in the dual of the Schwartz
class S ′ is denoted by F(ψ) (recall that we omit the choice of the normalization of the
Fourier transform as it is irrelevant for our purpose). For s in R, Hs is the usual Sobolev
space,

Hs := {ψ ∈ S ′ | F(ψ) ∈ L1
loc and ξ 7→ ⟨ξ⟩sF(ψ)(ξ) ∈ L2}

and Ḣs is the corresponding homogeneous Sobolev space,

Ḣs := {ψ ∈ S ′ | F(ψ) ∈ L1
loc and ξ 7→ |ξ|sF(ψ)(ξ) ∈ L2}.

The set of norm continuous operators from a Banach space V1 to a Banach space V2 is
denoted by B(V1,V2). If V1 = V2 we set B(V1) := B(V1,V1). The domain and quadratic form
domain of an operator A in a Hilbert space are denoted by D(A) and Q(A), respectively.
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We now specify the notion of unitary propagator that we use here. We consider a compact
interval I of R and a family (At)t∈I of self-adjoint operators on L2 such that D(At) ∩H1/2

is dense in H1/2 and the At are continuously extendable to B(H1/2, H−1/2).

Definition 2.1. The map I × I ∋ (t, s) 7→ U(t, s) is a unitary propagator associated to

i∂tψt = Atψt , t ∈ I (2.1)

if and only if

1. U(t, s) is unitary on L2 for all t, s in I,

2. U(t, t) = 1L2 for all t in I and U(t, s)U(s, r) = U(t, r) for all t, s, r in I,

3. For all s in I, the map t ∋ I 7→ U(t, s) belongs to

C0(I,B(H
1
2 )str) ∩ C1(I,B(H

1
2 , H− 1

2 )str)

and satisfies
∀t, s ∈ I , ∀ψ ∈ H

1
2 , i∂tU(t, s)ψ = AtU(t, s)ψ ,

as an equality in H−1/2.

In the previous definition, the index “str” indicates that the considered topology is the
strong operator topology. In the sequel we will apply Definition 2.1 with I = [0, T ]. As
mentioned in the introduction, we will use the notation Ut = U(t, 0).

Remark 2.2. It is not difficult to verify that if U(t, s) is a unitary propagator in the sense
of Definition 2.1, then we also have

∀t, s ∈ I , ∀ψ ∈ H
1
2 , i∂sU(t, s)ψ = U(t, s)Asψ .

3 Maximal Velocity Estimates

In this section we prove Theorem 1.1 and Corollary 1.4. Note that if X and Y are such that
dist(X, Y ) = 0, then the statements of Theorem 1.1 and Corollary 1.4 are obvious. In the
remainder of this section we will therefore assume that dist(X,Y ) > 0.

Following the strategy explained in the introduction we aim at proving (1.4) for a suit-
able function ℓ. To reach those estimates, we will need several lemmata. The first one
is a quantitative separation lemma which allows us to introduce the function ℓ satisfying
Eq. (1.4).

Lemma 3.1. Let X, Y be two convex subsets of Rd such that dist(X,Y ) > 0. There exist x0
in Rd and a unit vector n in Rd such that the affine functional ℓ(x) := n · (x− x0) satisfies

∀x ∈ X, ℓ(x) ≥ 1

2
dist(X, Y ) and ∀x ∈ Y, ℓ(x) ≤ −1

2
dist(X, Y ) .

Proof. We use the notation B̊(a, r) for the open ball centered at a and of radius r > 0. The
sets

AX :=
⋃
x∈X

B̊
(
x,

dist(X, Y )

2

)
and AY :=

⋃
x∈Y

B̊
(
x,

dist(X, Y )

2

)
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are convex and disjoint, and one can use the separation of disjoint convex sets to get n, x0
in Rd, |n| = 1 such that ℓ(x) = n · (x − x0) is nonnegative on AX and nonpositive on AY .

By continuity, ℓ is nonnegative on AX and for all x in X, x− dist(X,Y )
2

n is in AX and thus

ℓ(x)− dist(X, Y )

2
= n ·

(
x− dist(X, Y )

2
n− x0

)
≥ 0 .

The inequality for x in Y is obtained using that x+ dist(X,Y )
2

n lies in AY .

From now on, we consider ℓ as in Lemma 3.1 and for all ε > 0, we introduce a bounded
regularization of ℓ by setting

ℓε(x) := fε(ℓ(x)) = fε(n · (x− x0)),

where fε(r) = f(εr), f belongs to C∞(R), f(r) = r on [−1, 1], 0 ≤ f ′ ≤ 1 and f ′ is compactly
supported. We also introduce the notation

∇±n,ε := ∇± nf ′
ε(ℓ(x)), ∆±n,ε :=

(
∇± nf ′

ε(ℓ(x))
)2
.

We recall (see [27]) that a quadratic form Q on L2 with form domain Q is called strictly
m-accretive if it closed on Q and there exists 0 < θ < π

2
such that |ArgQ(φ, φ)| ≤ θ for

all φ ∈ Q. By [27, Theorem VIII.16], if Q is strictly m-accretive, there is a unique closed
operator A associated to Q, and for all λ > 0, we have

∥(A+ λ)−1∥B(L2) ≤ λ−1.

Lemma 3.2. For all ε ≥ 0 and ζ > 0, −∆±n,ε is strictly m-accretive on H1 and we have∥∥[−∆±n,ε + 1 + ζ
]−1∥∥

B(L2)
≤ ζ−1, (3.1)∥∥∇[

−∆±n,ε + 1 + ζ
]−1∥∥

B(L2)
≲ max(ζ−

1
2 , ζ−1), (3.2)∥∥∇[

−∆±n,ε + 1 + ζ
]−1∇

∥∥
B(L2)

≲ max(1, ζ−1). (3.3)

Proof. Let ε ≥ 0, ζ > 0. We compute, for all φ and ψ in H1,〈
φ,

[
−∆±n,ε + 1 + ζ

]
ψ
〉

=
〈
φ,

[
−∆+ 1 + ζ − f ′

ε(ℓ(x))
2
]
ψ
〉
∓
〈
φ,

[
∇ · nf ′

ε(ℓ(x)) + f ′
ε(ℓ(x))n · ∇

]
ψ
〉
.

Since 0 ≤ f ′
ε ≤ 1, this implies that∣∣〈φ, [−∆±n,ε + 1 + ζ

]
ψ
〉∣∣ ≲ ∥φ∥H1∥ψ∥H1 ,

and hence −∆±n,ε + 1 + ζ is a well-defined quadratic form on H1. Now,

Re
〈
φ,

[
−∆±n,ε + 1 + ζ

]
φ
〉
=

〈
φ,

[
−∆+ 1 + ζ − f ′

ε(ℓ(x))
2
]
φ
〉
≥ ∥φ∥2

Ḣ1 + ζ∥φ∥2L2 ,

and∣∣Im 〈
φ,

[
−∆±n,ε + 1 + ζ

]
φ
〉∣∣ = ∣∣〈φ, [∇ · nf ′

ε(ℓ(x)) + f ′
ε(ℓ(x))n · ∇

]
φ
〉∣∣ ≤ 2∥φ∥Ḣ1∥φ∥L2 .
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The previous two equations imply that the quadratic form −∆±n,ε + 1 + ζ is closed on H1.
Moreover, for all φ in H1,〈

φ,
[
−∆±n,ε + 1 + ζ

]
ψ
〉
∈
{
z = λ+ iµ ∈ C |λ ≥ 0, |µ| ≤ ζ−

1
2λ

}
,

and hence −∆±n,ε+1+ ζ is strictly m-accretive. By [27, Theorem VIII.17], we then deduce
that for all ζ ′ > 0, ∥∥[−∆±n,ε + 1 + ζ + ζ ′

]−1∥∥
B(L2)

≤ (ζ ′)−1.

Since this holds for any ζ > 0, (3.1) follows.
To prove (3.2), it suffices to write, for any φ in L2,∥∥∇[

−∆±n,ε + 1 + ζ
]−1

φ
∥∥2

L2

= −
〈[

−∆±n,ε + 1 + ζ
]−1

φ,∆
[
−∆±n,ε + 1 + ζ

]−1
φ
〉

= −
〈[

−∆±n,ε + 1 + ζ
]−1

φ,∆±n,ε
[
−∆±n,ε + 1 + ζ

]−1
φ
〉
+Rem.

By (3.1), the first term is bounded by O(ζ−1)∥φ∥2L2 while the “remainder” term satisfies

∥Rem∥ ≲ ζ−1
∥∥∇[

−∆±n,ε + 1 + ζ
]−1

φ
∥∥
L2∥φ∥L2 + ∥

[
−∆±n,ε + 1 + ζ

]−1
φ
∥∥2

L2 .

This yields (3.2). To prove the last equation (3.3), we proceed similarly, first writing the
equation ∇ = ∇± nf ′

ε(ℓ(x))∓ nf ′
ε(ℓ(x)) and then using that ∇± nf ′

ε(ℓ(x)) commutes with
the resolvent.

For all ε > 0, we define the operator Gε on H
1 by

Gε := Im
(
eℓε(x)⟨∇⟩e−ℓε(x)

)
=

1

2i

(
eℓε(x)⟨∇⟩e−ℓε(x) − e−ℓε(x)⟨∇⟩eℓε(x)

)
. (3.4)

Lemma 3.3. For all ε > 0, Gε extends to a bounded operator on L2, with

sup
ε>0

∥Gε∥B(L2) <∞.

Proof. Using the relation

⟨∇⟩ = 1

π

ˆ ∞

0

(
ζ−1/2 − ζ1/2(−∆+ 1 + ζ)−1

)
dζ,

on H1 (which directly follows from functional calculus), we have, as a quadratic form on H1,

eℓε(x)⟨∇⟩e−ℓε(x) − e−ℓε(x)⟨∇⟩eℓε(x)

=
1

π

ˆ ∞

0

ζ1/2
[(

−∆n,ε + 1 + ζ
)−1 −

(
−∆−n,ε + 1 + ζ

)−1
]
dζ. (3.5)

Here we used the explicit computation e±ℓε(x)∇e∓ℓε(x) = ∇∓ nf ′
ε(ℓ(x)) = ∇∓n,ε.

Now we split the integral in the right-hand side of (3.5) into two parts. For the integral
from 0 to 1, using (3.1) we directly obtain that

ˆ 1

0

ζ1/2
∥∥∥[−∆n,ε + 1 + ζ

]−1 −
[
−∆−n,ε + 1 + ζ

]−1
∥∥∥
B(L2)

dζ ≲ 1, (3.6)
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uniformly in ε > 0. For the integral from 1 to ∞, we use first the resolvent equation, writing[
−∆n,ε + 1 + ζ

]−1 −
[
−∆−n,ε + 1 + ζ

]−1

= 2
[
−∆−n,ε + 1 + ζ

]−1[∇ · nf ′
ε(ℓ(x)) + f ′

ε(ℓ(x))n · ∇
][

−∆n,ε + 1 + ζ
]−1

= 2∇−n,ε · n
[
−∆−n,ε + 1 + ζ

]−1
f ′
ε(ℓ(x))

[
−∆n,ε + 1 + ζ

]−1

+ 2
[
−∆−n,ε + 1 + ζ

]−1
f ′
ε(ℓ(x))

[
−∆n,ε + 1 + ζ

]−1
n · ∇n,ε. (3.7)

The two terms on the right-hand side are estimated in the same way. Consider for instance
the first one. Using again the resolvent equation, we obtain

∇−n,ε · n
[
−∆−n,ε + 1 + ζ

]−1
f ′
ε(ℓ(x))

[
−∆n,ε + 1 + ζ

]−1

= ∇−n,ε · n
[
−∆+ 1 + ζ

]−1
f ′
ε(ℓ(x))

[
−∆+ 1 + ζ

]−1

+∇−n,ε · n
[
−∆+ 1 + ζ

]−1(
f ′
ε(ℓ(x))

2 + f ′
ε(ℓ(x))n · ∇+∇ · nf ′

ε(ℓ(x))
)[

−∆−n,ε + 1 + ζ
]−1

f ′
ε(ℓ(x))

[
−∆n,ε + 1 + ζ

]−1

+∇−n,ε · n
[
−∆+ 1 + ζ

]−1
f ′
ε(ℓ(x))

[
−∆+ 1 + ζ

]−1(
f ′
ε(ℓ(x))

2 + f ′
ε(ℓ(x))n · ∇+∇ · nf ′

ε(ℓ(x))
)[

−∆n,ε + 1 + ζ
]−1

. (3.8)

Using in particular (3.1)–(3.3), it is not difficult to see that the last two terms in the right-
hand side of (3.8) are O(ζ−2), uniformly in ε. For the first term in the right-hand side

of (3.8), we commute f ′
ε(ℓ(x)) through

[
−∆+ 1 + ζ

]−1
, obtaining

∇−n,ε · n
[
−∆+ 1 + ζ

]−1
f ′
ε(ℓ(x))

[
−∆+ 1 + ζ

]−1

= ∇−n,ε · n
[
−∆+ 1 + ζ

]−2
f ′
ε(ℓ(x))

+∇−n,ε · n
[
−∆+ 1 + ζ

]−2(∇ · (∇f ′
ε)(ℓ(x)) + (∇f ′

ε)(ℓ(x)) · ∇
)[

−∆+ 1 + ζ
]−1

.

The second term is O(ζ−2) by the same arguments as before. Therefore, combining the
previous expression with (3.8), we have established that

ˆ ∞

1

ζ1/2
([

−∆−n,ε + 1 + ζ
]−1 −

[
−∆n,ε + 1 + ζ

]−1
)
dζ

=

ˆ ∞

1

ζ1/2
(
∇−n,ε · n

[
−∆+ 1 + ζ

]−2
f ′
ε(ℓ(x))− f ′

ε(ℓ(x))
[
−∆+ 1 + ζ

]−2∇n,ε · n
)
dζ +R,

with ∥R∥B(L2) ≲ 1 uniformly in ε. Here the second term in the integral is the contribution
from the term in (3.7). Now we can replace the integral from 1 to ∞ by the integral from 0
to ∞ up to a uniformly bounded contribution, and then integrate in ζ, using the explicit
expression

⟨∇⟩−1 =
2

π

ˆ ∞

0

ζ1/2(−∆+ 1 + ζ)−2 dζ .

Since ∥∥∇−n,ε · n⟨∇⟩−1f ′
ε(ℓ(x))

∥∥
B(L2)

≲ 1,
∥∥f ′

ε(ℓ(x))⟨∇⟩−1∇n,ε · n
∥∥
B(L2)

≲ 1,

uniformly in ε, this concludes the proof of the lemma.
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For all z in C \ (−∞, 0), we write
√
z =

√
|z|e i

2
Arg(z) with −π < Arg(z) < π and for all ξ

in Rd, we set

f±(ξ) :=
√
|ξ ± in|2 + 1 =

√
|ξ|2 ± 2in · ξ. (3.9)

Lemma 3.4. For all ξ in Rd, we have∣∣Imf±(ξ)∣∣ ≤ 1.

Proof. A direct computation shows that, for all z = λ+ iµ with λ, µ in R,

Im
√
z =

sign(µ)√
2

(√
λ2 + µ2 − λ

) 1
2 .

Applying this with λ = |ξ|2, µ = ±2n · ξ, we obtain

|Imf±(ξ)| =
1√
2

(√
|ξ|4 + 4(n · ξ)2 − |ξ|2

) 1
2 =

√
2

|n · ξ|(√
|ξ|4 + 4(n · ξ)2 + |ξ|2

) 1
2

.

Since |n · ξ|2 ≤ |ξ|2 ≤ 1
2
(
√

|ξ|4 + 4(n · ξ)2 + |ξ|2), the result follows.

We define the operator G0 on L2 by

G0 := Im(f+(−i∇)) = F Im(f+(ξ))F−1. (3.10)

It then follows from Lemma 3.4 that

∥G0∥B(L2) ≤ 1. (3.11)

The next lemma shows that G0 is the weak limit of Gε (defined in (3.4)) as ε→ 0.

Lemma 3.5. We have
Gε → G0, ε→ 0,

weakly in B(L2).

Proof. We first show that for all φ and ψ in C∞
0 ,

⟨φ,G0ψ⟩ = Im
〈
eℓ(x)φ, ⟨∇⟩e−ℓ(x)ψ

〉
= Im

〈
en·xφ, ⟨∇⟩e−n·xψ

〉
. (3.12)

The second equality is obvious. To prove the first one, let us set φ̃(x) = en·xφ(x) and,
similarly, ψ̃(x) = e−n·xψ(x). We have φ, φ̃, ψ, ψ̃ in C∞

0 and hence the Paley-Wiener Theorem
(see e.g. [26, Theorem IX.11]) implies that the Fourier transforms of these functions are
entire analytic on Cd, satisfying, for all integer j in N,∣∣(Fφ)(z)∣∣ ≤ Cn(1 + |z|)−jeR|Im(z)|, z ∈ Cd, (3.13)

for some R > 0, and likewise for φ̃, ψ, ψ̃. Since in addition F(φ̃)(z) = F(φ)(z + in) and,
similarly, F(ψ̃)(z) = F(ψ)(z − in), we can compute

〈
en·xφ, ⟨∇⟩e−n·xψ

〉
=

ˆ
Rd

F(φ)(ξ + in) ⟨ξ⟩ F(ψ)(ξ − in)dξ

11



=

ˆ
Rd

F−1(φ̄)(ξ − in) ⟨ξ⟩ F(ψ)(ξ − in)dξ.

Using analyticity and the decay properties (3.13), we can shift the contour of integration in
the previous integral, obtaining〈

en·xφ, ⟨∇⟩e−n·xψ
〉
=

ˆ
Rd

F−1(φ̄)(ξ) ⟨ξ + in⟩ F(ψ)(ξ)dξ

=

ˆ
Rd

F(φ)(ξ) ⟨ξ + in⟩ F(ψ)(ξ)dξ =
〈
φ, f+(−i∇)ψ

〉
.

Taking the imaginary part gives (3.12).
Now we prove the weak convergence in the statement of the lemma. Let φ, ψ in L2.

Let 0 < δ < 1 and φδ, ψδ in C∞
0 be such that ∥φ − φδ∥L2 ≤ δ, ∥ψ − ψδ∥L2 ≤ δ. Using

Lemma 3.3 and ∥G0∥B(L2) ≤ 1, we have∣∣⟨φ,Gεψ⟩ − ⟨φ,G0ψ⟩
∣∣ ≤ ∣∣⟨φδ, Gεψδ⟩ − ⟨φδ, G0ψδ⟩

∣∣+ Cδ, (3.14)

uniformly in ε > 0. Moreover, we can also write

⟨e±ℓε(x)φδ, ⟨∇⟩e∓ℓε(x)ψδ⟩ − ⟨e±ℓ(x)φδ, ⟨∇⟩e∓ℓ(x)ψδ⟩
=

〈(
e±ℓε(x) − e±ℓ(x)

)
φδ, ⟨∇⟩e∓ℓε(x)ψδ

〉
+
〈
⟨∇⟩e±ℓ(x)φδ,

(
e∓ℓε(x) − e∓ℓ(x)

)
ψδ

〉
.

Since φδ, ψδ ∈ C∞
0 , we have ∥⟨∇⟩e±ℓ(x)φδ∥L2 ≤ Cδ, ∥⟨∇⟩e∓ℓε(x)ψδ∥L2 ≤ Cδ (uniformly in ε),

and ∥∥(e±ℓε(x) − e±ℓ(x)
)
φδ

∥∥
L2 → 0,

∥∥(e∓ℓε(x) − e∓ℓ(x)
)
ψδ

∥∥
L2 → 0, ε→ 0.

Now, using (3.12) we can insert this into (3.14), which yields

lim sup
ε→0

∣∣⟨φ,Gεψ⟩ − ⟨φ,G0ψ⟩
∣∣ ≤ Cδ.

Since δ > 0 is arbitrary, this concludes the proof.

We now consider the unitary propagator (Ut)t∈[0,T ] generated by (⟨∇⟩ + Vt)t∈[0,T ] as in
the statement of Theorem 1.1. We first use Lemma 3.3 to show that for any t in [0, T ], the
operator e−ℓ(x)Ute

ℓ(x) is well-defined and bounded on L2.

Lemma 3.6. Under the assumptions of Theorem 1.1, for all t in [0, T ], we have

Ran(Ute
ℓ(x)) ⊂ D(e−ℓ(x)),

and e−ℓ(x)Ute
ℓ(x) extends to a bounded operator on L2. Moreover,

e−ℓε(x)Ute
ℓε(x) → e−ℓ(x)Ute

ℓ(x) as ε→ 0,

strongly in B(L2).

Proof. Let φ in C∞
0 and ε > 0. We compute∥∥e−ℓε(x)Uteℓε(x)φ∥∥2

L2

= ∥φ∥2L2 + 2Re

ˆ t

0

〈
e−ℓε(x)Uτe

ℓε(x)φ , e−ℓε(x)(−iHτ )Uτe
ℓε(x)φ

〉
dτ
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= ∥φ∥2L2 + 2Re

ˆ t

0

〈
e−ℓε(x)Uτe

ℓε(x)φ , e−ℓε(x)(−i⟨∇⟩)eℓε(x)e−ℓε(x)Uτeℓε(x)φ
〉
dτ,

where in the second equality we used that

Re
〈
e−ℓε(x)Uτe

ℓε(x)φ , e−ℓε(x)(−iVt)eℓε(x)e−ℓε(x)Uτeℓε(x)φ
〉
= 0.

Since

2Re e−ℓε(x)(−i⟨∇⟩)eℓε(x) = 2Im
(
e−ℓε(x)⟨∇⟩eℓε(x)

)
= 2Gε,

we can rewrite the equality above as∥∥e−ℓε(x)Uteℓε(x)φ∥∥2

L2 = ∥φ∥2L2 + 2

ˆ t

0

〈
e−ℓε(x)Uτe

ℓε(x)φ , Gεe
−ℓε(x)Uτe

ℓε(x)φ
〉
dτ. (3.15)

Now we can use Lemma 3.3 to deduce that∥∥e−ℓε(x)Uteℓε(x)φ∥∥2

L2 ≤ ∥φ∥2L2 + C

ˆ t

0

∥∥e−ℓε(x)Uτeℓε(x)φ∥∥2

L2dτ,

for some positive constant C independent of ε. Hence, by Gronwall’s inequality,∥∥e−ℓε(x)Uteℓε(x)φ∥∥2

L2 ≤ eCt∥φ∥2L2 , (3.16)

uniformly in ε. By density, this inequality can be extended to any φ in L2.
For all φ in D(eℓ(x)) and ψ in D(e−ℓ(x)), using that ∥Ut∥B(L2) = 1, we can then write∣∣⟨e−ℓ(x)ψ,Uteℓ(x)φ⟩∣∣ = lim

ε→0

∣∣⟨ψ, e−ℓε(x)Uteℓε(x)φ⟩∣∣ ≤ e
1
2
Ct∥ψ∥L2∥φ∥L2 .

This proves that Ran(Ute
ℓ(x)) ⊂ D(e−ℓ(x)) and that e−ℓ(x)Ute

ℓ(x) extends to a bounded oper-
ator on L2.

To prove the strong convergence, consider now φ in L2. Let δ > 0 and let φδ in C∞
0 be

such that ∥φ− φδ∥L2 ≤ δ. We write

e−ℓ(x)Ute
ℓ(x)φ− e−ℓε(x)Ute

ℓε(x)φ

= (e−ℓ(x) − e−ℓε(x))Ute
ℓ(x)φδ − e−ℓε(x)Ute

ℓ(x)(eℓε(x)e−ℓ(x) − 1)φδ

+
(
e−ℓ(x)Ute

ℓ(x) − e−ℓε(x)Ute
ℓε(x)

)
(φ− φδ), (3.17)

and estimate the L2-norm of each term on the right-hand side separately. Using (3.16), the
third term is bounded by∥∥(e−ℓ(x)Uteℓ(x) − e−ℓε(x)Ute

ℓε(x)
)
(φ− φδ)

∥∥
L2 ≤ Ctδ, (3.18)

uniformly in ε > 0. To estimate the second term, observing that −ℓε(x) ≤ max(−ℓ(x), 0),
we can bound∥∥e−ℓε(x)Uteℓ(x)(eℓε(x)e−ℓ(x) − 1)φδ

∥∥
L2

≤
∥∥e−ℓ(x)Uteℓ(x)(eℓε(x)e−ℓ(x) − 1)φδ

∥∥
L2 +

∥∥Uteℓ(x)(eℓε(x)e−ℓ(x) − 1)φδ
∥∥
L2

≤ C
∥∥(eℓε(x)e−ℓ(x) − 1)φδ

∥∥
L2 +

∥∥(eℓε(x) − eℓ(x))φδ
∥∥
L2 ,
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for some positive constant C, where we used that e−ℓ(x)Ute
ℓ(x) belongs to B(L2) and Ut is

unitary in the second line. Since φδ is compactly supported, we deduce from Lebesgue’s
dominated convergence Theorem that∥∥e−ℓε(x)Uteℓ(x)(eℓε(x)e−ℓ(x) − 1)φδ

∥∥
L2 → 0 as ε→ 0. (3.19)

It remains to estimate the first term on the right-hand side of (3.17). Since (using the bound
−ℓε(x) ≤ max(−ℓ(x), 0)) we have∣∣(e−ℓ(x) − e−ℓε(x))(Ute

ℓ(x)φδ)(x)
∣∣ ≤ 2e−ℓ(x)|Uteℓ(x)φδ|(x) + |Uteℓ(x)φδ|(x),

we can apply again Lebesgue’s dominated convergence Theorem to deduce that∥∥(e−ℓ(x) − e−ℓε(x))Ute
ℓ(x)φδ

∥∥
L2 → 0 as ε→ 0. (3.20)

Putting together (3.17)–(3.20), we have shown that

lim sup
ε→0

∥∥e−ℓ(x)Uteℓ(x)φ− e−ℓε(x)Ute
ℓε(x)φ

∥∥
L2 ≤ Cδ.

Since δ > 0 is arbitrary, this concludes the proof.

Now we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. Using Lemmata 3.1 and 3.6, we can write

∥1YUt1X∥B(L2) ≤ ∥1Y eℓ(x)∥B(L2)∥e−ℓ(x)Uteℓ(x)∥B(L2)∥e−ℓ(x)1X∥B(L2) (3.21)

with the following bounds on the terms with the characteristic functions:

∥1Y eℓ(x)∥B(L2) ≤ e−
1
2
dist(X,Y ), ∥e−ℓ(x)1X∥B(L2) ≤ e−

1
2
dist(X,Y ). (3.22)

Thus it remains to estimate the norm of e−ℓ(x)Ute
ℓ(x). Using Lemmata 3.3, 3.5 and 3.6, we

can pass to the limit ε→ 0 in (3.15), yielding

∥∥e−ℓ(x)Uteℓ(x)φ∥∥2

L2 = ∥φ∥2L2 + 2

ˆ t

0

〈
e−ℓ(x)Uτe

ℓ(x)φ , G0e
−ℓ(x)Uτe

ℓ(x)φ
〉
dτ. (3.23)

Since ∥G0∥B(L2) ≤ 1 by (3.11), we deduce that

∥∥e−ℓ(x)Uteℓ(x)φ∥∥2

L2 ≤ ∥φ∥2L2 + 2

ˆ t

0

∥∥e−ℓ(x)Uτeℓ(x)φ∥∥2

L2dτ.

Gronwall’s Lemma then yields∥∥e−ℓ(x)Uteℓ(x)φ∥∥2

L2 ≤ e2t∥φ∥2L2 .

Therefore ∥∥e−ℓ(x)Uteℓ(x)∥∥B(L2)
≤ et. (3.24)

Putting together (3.21), (3.22) and (3.24) concludes the proof of the theorem.

Now we prove Corollary 1.4 for non necessarily convex subsets X and Y .
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Proof of Corollary 1.4. Without loss of generality one can assume that dist(X,Y ) ≥
√
d, by

taking Cd such that Cde
−
√
d ≥ 1. Let r in (0, dist(X,Y )

2
√
d

]. With Qz = z+r
[
− 1

2
, 1
2

)d
for z in Rd,

we set

ZX = {z ∈ (rZ)d | Qz ∩X ̸= ∅} , and ZY = {z ∈ (rZ)d | Qz ∩ Y ̸= ∅} .

Then X ⊆ Xr =
⋃
x∈ZX

Qx and Y ⊆ Yr =
⋃
y∈ZY

Qy so

∥1YUt1X∥B(L2) = sup
∥f∥L2=1
∥g∥L2=1

|⟨1Y g, Ut1Xf⟩| ≤ sup
∥f∥L2=1
∥g∥L2=1

|⟨1Yrg, Ut1Xrf⟩| .

Using the triangle inequality, the Cauchy-Schwarz inequality, and Theorem 1.1 we obtain

|⟨1Yrg, Ut1Xrf⟩| ≤
∑
x∈ZX
y∈ZY

∣∣〈1Qyg, Ut1Qxf
〉∣∣ ≤ ∑

x∈ZX
y∈ZY

∥1Qyg∥L2et−dist(Qy ,Qx)∥1Qxf∥L2 .

For x in ZX and y in ZY , the distance between Qx and Qy is larger than |x− y| − r
√
d

and dist(X,Y ) − r
√
d ≤ |x − y|, so we can rewrite the sums so that a convolution product

on (rZ)d appears, and one can use the Hölder and Young inequalities:

|⟨1Yrg, Ut1Xrf⟩| ≤ et+r
√
d

∑
x,y∈(rZ)d

∥1Qyg∥L2 δ|x−y|≥dist(X,Y )−r
√
d e

−|x−y|∥1Qxf∥L2

≤ et+r
√
d ∥1Qyg∥ℓ2y((rZ)d;L2)∥δ|z|≥dist(X,Y )−r

√
d e

−|z|∥ℓ1z((rZ)d;R)∥1Qxf∥ℓ2x((rZ)d;L2)

≤ et+r
√
d ∥g∥L2∥δ|z|≥dist(X,Y )/r−

√
d e

−r|z|∥ℓ1z(Zd;R)∥f∥L2 .

It remains to estimate K(X, Y, r) = er
√
d∥δ|z|≥dist(X,Y )/r−

√
d e

−r|z|∥ℓ1z(Zd;R). For the sake of

shortness, the letter R denotes dist(X,Y )
r

−
√
d, and with our assumption on r, R ≥

√
d. We

have

K(X, Y, r) = er
√
d
∑
z∈Zd

|z|≥R

e−r|z| ≤ er
√
d

∞∑
m=0

∑
(m+1)R≤|z|<(m+2)R

e−r(m+1)R

As all the unit cubes with center z in the shell (m+ 1)R ≤ |z′| < (m+ 2)R are included in
the shell (m+ 1/2)R ≤ |z′| < (m+ 5/2)R, it holds

K(X, Y, r) ≤ er
√
d

∞∑
m=0

2Rωd((m+ 5/2)R)d−1e−r(m+1)R

≤ Cde
r
√
de−rRRd

∞∑
m=0

(m+ d− 1) · · · (m+ 1)(e−rR)m .

An elementary computation yields, for |z| < 1,

∞∑
m=0

(m+ d− 1) · · · (m+ 1)zm =
(d− 1)!

(1− z)d

and thus

K(X, Y, r) ≲d e
r
√
der

√
d−dist(X,Y )Rd 1

(1− er
√
d−dist(X,Y ))d
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≲d e
2r

√
de−dist(X,Y )(

dist(X, Y )

r
−
√
d)d

1

(1− er
√
d−dist(X,Y ))d

≲d e
2r

√
de−dist(X,Y ) 1

rd
(dist(X, Y )− r

√
d)d

(1− er
√
d−dist(X,Y ))d

≲d e
2r

√
de−dist(X,Y ) 1

rd
(1 + dist(X,Y )− r

√
d)d.

Since we can assume dist(X, Y ) ≥
√
d, as remarked above, we choose r = 1

2
and we get:

K(X, Y, r) ≲d e
−dist(X,Y )⟨dist(X, Y )⟩d ,

which yields the result.

4 Unitary propagators

In this section we prove Proposition 1.6 giving a sufficient criterion on (Vt)t∈[0,T ] for the
family (⟨∇⟩+ Vt)t∈[0,T ] to generate a unitary propagator. We use in particular the following
result proved in [1, Appendix C] (the following proposition is stated in an abstract setting
in [1]; to simplify the presentation we only consider a particular case in the L2 setting, which
is sufficient for our purpose).

Proposition 4.1 (Corollary C.4 in [1]). Let I ⊆ R be a closed interval and let {(St)t∈I , S}
be a family of self-adjoint operators on L2 such that:

• S ≥ 1 and for all t in I, St ≥ 1,

• for all t in I, D(S
1/2
t ) = D(S1/2).

Let (At)t∈I be a family of symmetric bounded operators in B(H1/2, H−1/2) satisfying:

• t ∈ I 7→ At ∈ B(H1/2, H−1/2) is continuous.

Assume that there exists a continuous function f : I → [0,∞) such that for any t in I, we
have:
(i) for any ψ ∈ D(S

1/2
t ), ∣∣∂t⟨ψ, Stψ⟩L2

∣∣ ≤ f(t) ∥S1/2
t ψ∥2L2 ;

(ii) for any ϕ, ψ ∈ D(S
3/2
t ),

|⟨Stψ,Atϕ⟩L2 − ⟨Atψ, Stϕ⟩L2| ≤ f(t) ∥S1/2
t ψ∥L2 ∥S1/2

t ϕ∥L2 .

Then the non-autonomous Cauchy problem (2.1) admits a unique unitary propagator U(t, s).
Moreover, we have

∥S1/2
t U(t, s)ψ∥L2 ≤ exp

(
2
∣∣ ˆ t

s

f(τ)dτ
∣∣)∥S1/2

s ψ∥L2 , ∀ t, s ∈ I .

In addition, if there exist c1, c2 > 0 such that c1S ≤ S(t) ≤ c2S for all t in I, then there
exists c > 0 such that

∥U(t, s)∥B(H1/2) ≤ c exp
(
2
∣∣ ˆ t

s

f(τ)dτ
∣∣) , ∀ t, s ∈ I .
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We also recall a theorem [26, Theorem X.17], due to Kato, Lions, Lax, Milgram, and
Nelson:

Theorem 4.2 (KLMN Theorem). Let S be a positive self-adjoint operator on a Hilbert space
and suppose that q(φ, ψ) is a symmetric quadratic form on Q(S) such that there exist a
in [0, 1), b in R verifying

∀φ ∈ D(S) , |q(φ, φ)| ≤ a⟨φ, Sφ⟩+ b⟨φ, φ⟩ . (4.1)

Then there exists a unique self-adjoint operator A with Q(A) = Q(S) and

∀φ, ψ ∈ Q(A) , ⟨φ,Aψ⟩ = ⟨φ, Sψ⟩+ q(φ, ψ) . (4.2)

The operator A is bounded from below by −b and any domain of self-adjointness for S is a
form core for A.

As we use the definition of unitary propagator given in [1, Appendix C] with the Hilbert
rigging H1/2 ⊂ L2 ⊂ H−1/2, the KLMN theorem and Proposition 4.1 yield the following
theorem for the existence of a unitary propagator.

Proposition 4.3. Let I ⊆ R be a closed interval and let (qt(φ, ψ))t∈I be a family of sym-
metric quadratic forms on H1/2 such that, for all t in I, there exist at in [0, 1), bt in R
with

∀φ ∈ H
1
2 , |qt(φ, φ)| ≤ at∥φ∥2H1/2 + bt∥φ∥2L2 . (4.3)

For each such qt, let At be the corresponding self-adjoint operator on L2 obtained through the
KLMN theorem with S = ⟨∇⟩. Suppose furthermore that

• supt∈I bt <∞ and

• for all φ in H1/2, t 7→ qt(φ, φ) is differentiable on I, with

sup
t∈I

∥φ∥
H1/2=1

|∂tqt(φ, φ)| <∞ . (4.4)

Then the Cauchy problem (2.1) admits a unique unitary propagator U(t, s).

Proof. To show that the non-autonomous Cauchy problem (2.1) has a unique solution, we
apply Proposition 4.1 with:

• S = ⟨∇⟩

• St = At + CA with CA = 1 + supt∈I bt

• f(t) = sup{|∂sqs(φ, φ)| | s ∈ I , ∥φ∥H1/2 = 1}.

We first remark that S = ⟨∇⟩ ≥ 1 and for all φ ∈ H1/2 such that ∥φ∥L2 = 1,

⟨φ, Stφ⟩L2 = ⟨φ,Atφ⟩L2 + CA

= ⟨φ, ⟨∇⟩φ⟩L2 + qt(φ, φ) + CA

≥ (1− at)⟨φ, ⟨∇⟩φ⟩L2 − bt + CA ≥ 1,
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since CA = 1 + supt∈I bt and at < 1 for all t in I. Hence St ≥ 1 for all t in I, and

we have in addition that D(S
1/2
t ) = Q(St) = H1/2 = D(S1/2). Moreover the assumption

on the differentiability of t 7→ qt implies that the operators At extend to operators Ãt in
B(H1/2, H−1/2) which depend continuously on t in the operator norm topology. For all
φ ∈ H1/2, using (4.4) we have,∣∣∂t⟨φ, Stφ⟩L2

∣∣ = |∂tqt(φ, φ)| ≤ f(t) ≤ f(t)∥S1/2
t φ∥2L2 ,

since St ≥ 1. Finally, the bound on the commutator is obvious since At and St = At + CA
commute.

Proposition 4.3 allows us to consider propagators generated by family of operators of the
form (⟨∇⟩+ Vt)t∈[0,T ].

Proof of Proposition 1.6. Let I = [0, T ]. The first hypothesis on Vt in the statement of
Proposition 1.6 readily implies that, for all t ∈ I,

∀ψ ∈ H
1
2 ,

∣∣∣ˆ
Rd

|ψ|2 Vt
∣∣∣ ≤ at

〈
ψ, ⟨∇⟩ψ

〉
+ bt⟨ψ, ψ⟩, (4.5)

with at = ∥VB,t∥B(H1/2,H−1/2) and bt = ∥V∞,t∥L∞ . Using in addition the other hypotheses in
the statement of Proposition 1.6, it is clear that the quadratic form

qt(φ, ψ) =

ˆ
Rd

φ̄ Vt ψ (4.6)

satisfies the assumptions of Proposition 4.3. This shows Proposition 1.6.

A Sharpness of the maximal velocity estimate for con-

vex subsets

In this appendix we justify the “sharpness” of the maximal velocity estimate proven in
Theorem 1.1, in the sense given in Remark 1.3. We begin with the following proposition.

Proposition A.1. Let 0 < δ < 1, ε > 0. There exists Cδ,ε > 0 such that, for all t > 0, there
exist two convex subsets X, Y ⊂ Rd satisfying dist(X, Y ) = δt and∥∥1Y e−it⟨∇⟩1X

∥∥
B(L2)

≥ 1− ε− Cδ,ε
t
.

Proof. Let 0 < δ < 1. Introducing the notation Θ1 := −i∂x1⟨∇⟩−1, where x1 stands for the
first variable in Rd, we note that

eit⟨∇⟩x1e
−it⟨∇⟩ = x1 + tΘ1. (A.1)

Since the spectrum of Θ1 is σ(Θ1) = [−1, 1], we can consider φδ ∈ L2, ∥φδ∥L2 = 1, such that

1( 1
2
(1+δ),1](Θ1)φδ = φδ. (A.2)

Now let ε > 0 and fix Rδ,ε such that

∥1|x1|≥Rδ,ε
φδ∥L2 ≤ ε

2
. (A.3)
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Let t > 0 and choose

X = Xδ,ε := {x1 ≤ Rδ,ε}, Y = Yδ,ε,t := {x1 ≥ Rδ,ε + δt}.

Let f be a smooth function such that supp(f) ⊂ (0,∞), 0 ≤ f ≤ 1 and f ≡ 1 on [1
2
(1−δ),∞).

We first write∥∥1Y e−it⟨∇⟩1X
∥∥
B(L2)

=
∥∥∥1[0,∞)

(x1
t
− Rδ,ε

t
− δ

)
e−it⟨∇⟩1X

∥∥∥
B(L2)

≥
∥∥∥f(x1

t
− Rδ,ε

t
− δ

)
e−it⟨∇⟩1X

∥∥∥
B(L2)

=
∥∥∥f(x1

t
+Θ1 −

Rδ,ε

t
− δ

)
1X

∥∥∥
B(L2)

, (A.4)

where in the last equality we used the unitarity of e−it⟨∇⟩ and the explicit formula (A.1).
Next (A.3) and the fact that 0 ≤ f ≤ 1 give

f
(x1
t
+Θ1 −

Rδ,ε

t
− δ

)
1Xφδ = f

(x1
t
+Θ1 −

Rδ,ε

t
− δ

)
1[−Rδ,ε,Rδ,ε](x1)φδ +Rem1,

with ∥Rem1∥L2 ≤ ε
2
.

Let F be an almost analytic extension of f . This means that F belongs to C∞(C),
F |R = f , supp(F ) ⊂ {z ∈ C | |Im(z)| ≤ C⟨Re(z)⟩} for some C > 0 and, for all n in N,
|∂F
∂z̄
(z)| ≤ Cn|Im(z)|n⟨Re(z)⟩−n−1, with Cn > 0. Since f does not decay at ∞, we cannot

directly use the Helffer-Sjöstrand representation. We therefore introduce an artificial cutoff:
Let η in C∞

0 (R; [0, 1]) such that η = 1 near 0 and, for Λ > 0, let ηΛ(·) = η(·/Λ). Let η̃ in C∞
0 (C)

be an almost analytic extension of η and η̃Λ(·) = η̃(·/Λ). Define fΛ = fηΛ and FΛ = F η̃Λ. In
particular FΛ satisfies |∂FΛ

∂z̄
(z)| ≤ Cn|Im(z)|n⟨Re(z)⟩−n−1, uniformly in Λ ≥ 1. We can then

write (see e.g. [9])

fΛ

(x1
t
+Θ1 −

Rδ,ε

t
− δ

)
− fΛ(Θ1 − δ)

= − 1

π

ˆ
∂FΛ

∂z̄
(z)

(x1
t
+Θ1 −

Rδ,ε

t
− δ − z

)−1x1 −Rδ,ε

t
(Θ1 − δ − z)−1dRe(z)dIm(z)

= − 1

π

ˆ
∂FΛ

∂z̄
(z)

(x1
t
+Θ1 −

Rδ,ε

t
− δ − z

)−1

(Θ1 − δ − z)−1x1 −Rδ,ε

t
dRe(z)dIm(z)

+
1

πt

ˆ
∂FΛ

∂z̄
(z)

(x1
t
+Θ1 −

Rδ,ε

t
− δ − z

)−1

(Θ1 − δ − z)−1[x1,Θ1](Θ1 − δ − z)−1

dRe(z)dIm(z).

Using the bound on ∂FΛ

∂z̄
and the fact that the commutator [x1,Θ1] is bounded, we then

obtain

fΛ

(x1
t
+Θ1 −

Rδ,ε

t
− δ

)
1[−Rδ,ε,Rδ,ε](x1) = fΛ(Θ1 − δ)1[−Rδ,ε,Rδ,ε](x1) + Rem2,

with ∥Rem2∥B(L2) ≤
CRδ,ε

t
, where C > 0 does not depend on δ, ε, t,Λ. Using (A.3), we can

then rewrite
fΛ(Θ1 − δ)1[−Rδ,ε,Rδ,ε](x1)φδ = fΛ(Θ1 − δ)φδ +Rem3,

with ∥Rem3∥L2 ≤ ε
2
, uniformly in Λ ≥ 1. Letting Λ → ∞ yields∥∥f(Θ1 − δ)1[−Rδ,ε,Rδ,ε](x1)φδ − f(Θ1 − δ)φδ

∥∥
L2 ≤ ∥Rem3∥L2 .

19



Finally, since f ≡ 1 on [1
2
(1− δ),∞), we deduce from (A.2) that

f(Θ1 − δ)φδ = φδ.

Putting all together, we have shown that∥∥∥f(x1
t
+Θ1 −

Rδ,ε

t
− δ

)
1Xφδ

∥∥∥
L2

≥ 1− ε− CRδ,ε

t
.

Since ∥φδ∥L2 = 1, this concludes the proof of the proposition.

Corollary A.2. Let 0 < δ < 1. There exist t > 0, and X and Y convex subsets of Rd such
that

∥1Y e−it⟨∇⟩1X∥B(L2) > eδt−dist(X,Y ) .

Proof. Let δ̃ = (δ + 1)/2 and ε in (0, 1). Applying Proposition A.1 we deduce that for some
constant Cδ̃,ε > 0, for all t > 0 there exist two convex sets Xδ̃,ε and Yδ̃,ε,t such that the

equality dist(Xδ̃,ε, Yδ̃,ε,t) = δ̃t holds, and

∥1Yδ̃,ε,te
−it⟨∇⟩1Xδ̃,ε

∥B(L2) ≥ 1− ε−
Cδ̃,ε
t
.

Thus for t larger that some Tδ̃,ε > 0 ,

∥1Yδ̃,ε,te
−it⟨∇⟩1Xδ̃,ε

∥B(L2) > e
δ−1
2
t = eδt−dist(Xδ̃,ε,Yδ̃,ε,t) ,

which is the result.
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