Algebraic structure and numeration systems for circular words

Isabelle Dubois

Laboratoire IECL - Metz - Université de Lorraine
Numeration - June 2017

Joint work with Benoit Rittaud, still in progress

Starting point:
Consider the addition of two rationals, but focus only on the periods.
Let $A=178 / 55=3,2 \overline{36} \ldots$ and $B=421 / 330=1,2 \overline{75} \ldots$.
Then $A+B=4,5 \overline{12} \ldots$.
Or, if we make only the addition for the periods we have:

$$
\begin{aligned}
\overline{36}+\overline{75}=\overline{1011} & \approx \overline{(10+1)(11-10)}=\overline{(11) 1} \\
& \approx \overline{(11-10)(1+1)}=\overline{12}
\end{aligned}
$$

Starting point:

Consider the addition of two rationals, but focus only on the periods.
Let $A=178 / 55=3,2 \overline{36} \ldots$ and $B=421 / 330=1,275 \ldots$
Then $A+B=4,5 \overline{12} \ldots$.
Or, if we make only the addition for the periods we have:

$$
\begin{aligned}
\overline{36}+\overline{75}=\overline{1011} & \approx \overline{(10+1)(11-10)}=\overline{(11) 1} \\
& \approx \overline{(11-10)(1+1)}=\overline{12}
\end{aligned}
$$

We can interpret this operation in term of an addition of two circular words of length 2, with respect to the base 10 numeration:

$$
(36)+(75) \approx_{\text {base } 10}(12) .
$$

Starting point:

Consider the addition of two rationals, but focus only on the periods.
Let $A=178 / 55=3,2 \overline{36} \ldots$ and $B=421 / 330=1,2 \overline{75} \ldots$
Then $A+B=4,5 \overline{12} \ldots$
Or, if we make only the addition for the periods we have:

$$
\begin{aligned}
\overline{36}+\overline{75}=\overline{1011} & \approx \overline{(10+1)(11-10)}=\overline{(11) 1} \\
& \approx \overline{(11-10)(1+1)}=\overline{12}
\end{aligned}
$$

We can interpret this operation in term of an addition of two circular words of length 2, with respect to the base 10 numeration:

$$
(36)+(75) \approx_{\text {base } 10}(12)
$$

The notion of circular word was first introduced by B. Rittaud and L. Vivier (2011-2012), in the context of the Fibonacci numeration.

I have discovered this notion when Benoît gave a talk on this topic in Nancy, which led to a collaboration.

Presentation Outline

(1) Motivations
(2) Group of circular words of length ℓ

- Definition - Group of circular words of length ℓ
- Order of the group
- Structure of the group
- Subgroups
(3) Numeration system and representation of rationals in [0,1 [
- Whole group of circular words
- Numeration system - Representation of some rationals
- Examples
(4) Perspectives

Let $\ell \in \mathbb{N}^{*}$ be fixed.
Definition (Circular word of length ℓ)
A circular word of length ℓ is a finite word $\left(w_{0} \ldots w_{i} \ldots w_{\ell-1}\right)$ made of ℓ letters on the alphabet \mathbb{Z} and indexed by $\mathbb{Z} / \ell \mathbb{Z}$.

The set of circular words of length ℓ is an abelian group:

$$
W+W^{\prime}=\left(\left(w_{0}+w_{0}^{\prime}\right) \ldots\left(w_{i}+w_{i}^{\prime}\right) \ldots\left(w_{\ell-1}+w_{\ell-1}^{\prime}\right)\right)
$$

Let P be an integral polynomial $P(X)=\sum_{0 \leq i \leq d} a_{i} X^{i} \in \mathbb{Z}[X]\left(d \in \mathbb{N}^{*}\right)$.
Definition (Carry equivalence defined by P)
The carry equivalence \approx_{P} defined by P on circular words $W=\left(w_{0} \ldots w_{\ell-1}\right)$ is based on the relations: for all i modulo ℓ, $W \approx_{P}\left(w_{0} \ldots\left(w_{i-d}+a_{0}\right) \ldots\left(w_{i-1}+a_{d-1}\right)\left(w_{i}+a_{d}\right) w_{i+1} \ldots w_{\ell-1}\right)$.

Let $\ell \in \mathbb{N}^{*}$ be fixed.
Definition (Circular word of length ℓ)
A circular word of length ℓ is a finite word $\left(w_{0} \ldots w_{i} \ldots w_{\ell-1}\right)$ made of ℓ letters on the alphabet \mathbb{Z} and indexed by $\mathbb{Z} / \ell \mathbb{Z}$.

The set of circular words of length ℓ is an abelian group:

$$
W+W^{\prime}=\left(\left(w_{0}+w_{0}^{\prime}\right) \ldots\left(w_{i}+w_{i}^{\prime}\right) \ldots\left(w_{\ell-1}+w_{\ell-1}^{\prime}\right)\right)
$$

Let P be an integral polynomial $P(X)=\sum_{0 \leq i \leq d} a_{i} X^{i} \in \mathbb{Z}[X]\left(d \in \mathbb{N}^{*}\right)$.
Definition (Carry equivalence defined by P)
The carry equivalence \approx_{P} defined by P on circular words $W=\left(w_{0} \ldots w_{\ell-1}\right)$ is based on the relations: for all i modulo ℓ,

$$
W \approx_{P}\left(w_{0} \ldots\left(w_{i-d}+a_{0}\right) \ldots\left(w_{i-1}+a_{d-1}\right)\left(w_{i}+a_{d}\right) w_{i+1} \ldots w_{\ell-1}\right)
$$

Example. "Fibonacci" $P(X)=X^{2}-X-1, \ell=4$.
$(1234) \approx_{P}(0144) \approx_{P}(4100) \approx_{P}(3010) \approx_{P}(211(-1))$

$$
\approx_{P}\left(\begin{array}{llll}
2 & 0 & 0 & 0
\end{array}\right) \approx_{P}\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right) \approx_{P}\left(\begin{array}{llll}
0 & 1 & 1
\end{array}\right) \approx_{P}\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)
$$

Given: $\ell \in \mathbb{N}^{*}, P(X)=\sum_{0 \leq i \leq d} a_{i} X^{i} \in \mathbb{Z}[X]$.
Let σ be the shift transformation defined by

$$
\sigma\left(\left(w_{0} \ldots w_{\ell-1}\right)\right)=\left(w_{1} \ldots w_{\ell-1} w_{0}\right)
$$

Let $A_{\ell}:=\left(a_{0} \ldots a_{i} \ldots a_{d} 0 \ldots 0\right)$, if $\ell>d$, resp. $:=\left(\left(\sum_{j \equiv i \bmod \ell} a_{j}\right)_{i}\right)$ if $\ell \leq d$, be the circular word associated to P.

Definition (Group of circular words with carry equivalence)
The carry equivalence \approx_{P} defined by P on circular words of length ℓ is : $W \approx_{P} W^{\prime}$ if and only if there exists $\left(v_{0}, \ldots, v_{\ell-1}\right) \in \mathbb{Z}^{\ell}$ such that

$$
W=W^{\prime}+\sum_{0 \leq i \leq \ell-1} v_{i} \sigma^{-i}\left(A_{\ell}\right)
$$

Let $\mathcal{G}_{\ell, P}$ be the abelian quotient group of circular words of length ℓ by this carry equivalence.

Given: $\ell \in \mathbb{N}^{*}, P(X)=\sum_{0 \leq i \leq d} a_{i} X^{i} \in \mathbb{Z}[X]$.
Let σ be the shift transformation defined by

$$
\sigma\left(\left(w_{0} \ldots w_{\ell-1}\right)\right)=\left(w_{1} \ldots w_{\ell-1} w_{0}\right)
$$

Let $A_{\ell}:=\left(a_{0} \ldots a_{i} \ldots a_{d} 0 \ldots 0\right)$, if $\ell>d$, resp. $:=\left(\left(\sum_{j \equiv i \bmod \ell} a_{j}\right)_{i}\right)$ if $\ell \leq d$, be the circular word associated to P.

Definition (Group of circular words with carry equivalence)
The carry equivalence \approx_{P} defined by P on circular words of length ℓ is : $W \approx_{P} W^{\prime}$ if and only if there exists $\left(v_{0}, \ldots, v_{\ell-1}\right) \in \mathbb{Z}^{\ell}$ such that

$$
W=W^{\prime}+\sum_{0 \leq i \leq \ell-1} v_{i} \sigma^{-i}\left(A_{\ell}\right)
$$

Let $\mathcal{G}_{\ell, P}$ be the abelian quotient group of circular words of length ℓ by this carry equivalence.

Examples.

- "Base 2": $P(X)=X-2, \ell=2, \mathcal{G}_{2, P}=\{(00),(10),(01)\}$
- "Fibonacci" : $P(X)=X^{2}-X-1, \ell=4$,

$$
\mathcal{G}_{4, P}=\left\{\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)\right\} .
$$

The group of circular words of length ℓ with a carry P can be studied via algebraic isomorphisms between $\mathcal{G}_{\ell, P}$ and the:
(1) Set of equivalent points on the action of the $\ell \times \ell$ circulant matrix whose first row is A_{ℓ} (or associated to P) on the lattice group \mathbb{Z}^{ℓ}.
(2) Abelian group (for +) of the quotient ring of integral polynomials $\mathbb{Z}[X] /\left(P(X), X^{\ell}-1\right)$. The multiplication by X correspond to the inverse of the shift transformation.

The group of circular words of length ℓ with a carry P can be studied via algebraic isomorphisms between $\mathcal{G}_{\ell, P}$ and the:
(1) Set of equivalent points on the action of the $\ell \times \ell$ circulant matrix whose first row is A_{ℓ} (or associated to P) on the lattice group \mathbb{Z}^{ℓ}.
(2) Abelian group (for +) of the quotient ring of integral polynomials $\mathbb{Z}[X] /\left(P(X), X^{\ell}-1\right)$. The multiplication by X correspond to the inverse of the shift transformation.

Proposition (Finite group)
$\mathcal{G}_{\ell, P}$ is a finite abelian group if and only if P has no ℓ-th roots of unity
From now on:
Assumption: P has no roots of unity.

The group of circular words of length ℓ with a carry P can be studied via algebraic isomorphisms between $\mathcal{G}_{\ell, P}$ and the:
(1) Set of equivalent points on the action of the $\ell \times \ell$ circulant matrix whose first row is A_{ℓ} (or associated to P) on the lattice group \mathbb{Z}^{ℓ}.
(2) Abelian group (for +) of the quotient ring of integral polynomials $\mathbb{Z}[X] /\left(P(X), X^{\ell}-1\right)$. The multiplication by X correspond to the inverse of the shift transformation.

Proposition (Finite group)
$\mathcal{G}_{\ell, P}$ is a finite abelian group if and only if P has no ℓ-th roots of unity
From now on:
Assumption: P has no roots of unity.
Links with other topics:

- dynamical systems : periodic points for toral endomorphisms
- cyclic resultants, for producing large primes

Let $g_{\ell, P}$ be the order of the group $\mathcal{G}_{\ell, P}$. We have:
Proposition (Properties of the order of the group)
(i) $g_{\ell, P}=\left|\operatorname{Resultant}\left(P(X), X^{\ell}-1\right)\right|=\left|\prod_{0 \leq k<\ell} P\left(e^{2 i \pi k / \ell}\right)\right|$.
(ii) $\left(g_{\ell, P}\right)_{\ell}$ is a divisibility sequence.
(iii) Exponential growth : $\lim _{\ell \rightarrow+\infty} \ln g_{\ell, P} / \ell=\ln M(P)$, where $M(P)$ is the Mahler measure of P.
(iv) Apparition of primitive prime factors: If P is monic and irreducible, there are infinite primitive prime factors in the sequence $\left(g_{\ell, P}\right)_{\ell}$ (and more finer results).

Let $g_{\ell, P}$ be the order of the group $\mathcal{G}_{\ell, P}$. We have:
Proposition (Properties of the order of the group)
(i) $g_{\ell, P}=\left|\operatorname{Resultant}\left(P(X), X^{\ell}-1\right)\right|=\left|\prod_{0 \leq k<\ell} P\left(e^{2 i \pi k / \ell}\right)\right|$.
(ii) $\left(g_{\ell, P}\right)_{\ell}$ is a divisibility sequence.
(iii) Exponential growth : $\lim _{\ell \rightarrow+\infty} \ln g_{\ell, P} / \ell=\ln M(P)$, where $M(P)$ is the Mahler measure of P.
(iv) Apparition of primitive prime factors: If P is monic and irreducible, there are infinite primitive prime factors in the sequence $\left(g_{\ell, P}\right)_{\ell}$ (and more finer results).

Example. Fibonacci case, $\left(g_{\ell, X^{2}-X-1}\right)_{\ell}=$ sequence A001350 "Associated Mersenne numbers". First primitive prime factors: $2,5,11,13,29,3,19$, 199, 521, 31, 7, 3571...
Open questions.
Find more generalized/deeper results on primitive prime factors.
Case of P not monic ?

From now, we omit the dependance on P.
Let $B^{(\ell)}(X)=\sum_{0 \leq i<\ell} b_{i}^{(\ell)} X^{i}$ be the integral polynomial such that

$$
g_{\ell}=P(X) B^{(\ell)}(X)+\left(X^{\ell}-1\right) \sum_{0 \leq i \leq d-1} v_{i}^{(\ell)} X^{i}
$$

Proposition (Structure of the group)
(i) The word $G_{\ell}:=\left(10^{\ell-1}\right)$ is an element of maximal order.
(ii) The exponent of the group \mathcal{G}_{ℓ} is equal to $g_{\ell} / \operatorname{gcd}\left(\left(b_{i}^{(\ell)}\right),\left(v_{j}^{(\ell)}\right)\right)$.
(iii) The group \mathcal{G}_{ℓ} is cyclic generated by G_{ℓ} if and only if $\operatorname{gcd}\left(b_{i}^{(\ell)}, g_{\ell}\right)=1$ for some (or any) i. In this case, the sequence $\left(b_{i}^{(\ell)}\left(\bmod g_{\ell}\right)\right)_{i}$ is geometric, and the inverse of its common ratio, is a root of the polynomial P and a ℓ-th root of unity in $\mathbb{Z} / g_{\ell} \mathbb{Z}$.

From now, we omit the dependance on P.
Let $B^{(\ell)}(X)=\sum_{0 \leq i<\ell} b_{i}^{(\ell)} X^{i}$ be the integral polynomial such that

$$
g_{\ell}=P(X) B^{(\ell)}(X)+\left(X^{\ell}-1\right) \sum_{0 \leq i \leq d-1} v_{i}^{(\ell)} X^{i}
$$

Proposition (Structure of the group)
(i) The word $G_{\ell}:=\left(10^{\ell-1}\right)$ is an element of maximal order.
(ii) The exponent of the group \mathcal{G}_{ℓ} is equal to $g_{\ell} / \operatorname{gcd}\left(\left(b_{i}^{(\ell)}\right),\left(v_{j}^{(\ell)}\right)\right)$.
(iii) The group \mathcal{G}_{ℓ} is cyclic generated by G_{ℓ} if and only if $\operatorname{gcd}\left(b_{i}^{(\ell)}, g_{\ell}\right)=1$ for some (or any) i. In this case, the sequence $\left(b_{i}^{(\ell)}\left(\bmod g_{\ell}\right)\right)_{i}$ is geometric, and the inverse of its common ratio, is a root of the polynomial P and a ℓ-th root of unity in $\mathbb{Z} / g_{\ell} \mathbb{Z}$.

Examples.

- "Base $b^{\prime}:(b \geq 2): P(X)=X-b, g_{\ell}=b^{\ell}-1, b_{i}^{(\ell)}=b^{\ell-1-i}$,

$$
\mathcal{G}_{\ell}=\left\langle\left(10^{\ell-1}\right)\right\rangle \simeq \mathbb{Z} /\left(b^{\ell}-1\right) \mathbb{Z}
$$

- "Rational base": $P(X)=p X-q(q>p$ coprime $), g_{\ell}=q^{\ell}-p^{\ell}$, $b_{i}^{(\ell)}=p^{i} q^{\ell-1-i}, \mathcal{G}_{\ell}=\left\langle\left(10^{\ell-1}\right)\right\rangle \simeq \mathbb{Z} /\left(q^{\ell}-p^{\ell}\right) \mathbb{Z}$.

In order to describe more precisely the structure of any group \mathcal{G}_{ℓ}, we have to use more algebraic tools.
A simple tool is to use Bezout's relations between P and $X^{\ell}-1$ (as for the previous proposition). But it is difficult to obtain general results for certain classes of polynomials.

Example. "Quadratic case, generalizing Fibonacci"
Let $P(X)=X^{2}-k X-1$, with $k \in \mathbb{N}^{*}$. Then we have:

- If ℓ is odd, then $\mathcal{G}_{\ell} \simeq \mathbb{Z} / g_{\ell} \mathbb{Z}$, except for $\ell \in 3 \mathbb{N}$ and k odd, where $\mathcal{G}_{\ell} \simeq \mathbb{Z} / g_{\ell} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
- If $\ell \equiv 2 \bmod 4$, then $\mathcal{G}_{\ell} \simeq \mathbb{Z} / \sqrt{g_{\ell}} \mathbb{Z} \times \mathbb{Z} / \sqrt{g_{\ell}} \mathbb{Z}$.
- If $\ell \equiv 0 \bmod 4$, then $\mathcal{G}_{\ell} \simeq \mathbb{Z} / \sqrt{\Delta g_{\ell}} \mathbb{Z} \times \mathbb{Z} / \sqrt{g_{\ell} / \Delta} \mathbb{Z}$ (case k odd), or $\mathcal{G}_{\ell} \simeq \mathbb{Z} / \sqrt{\Delta g_{\ell} / 4} \mathbb{Z} \times \mathbb{Z} / \sqrt{4 g_{\ell} / \Delta} \mathbb{Z}$ (case k even).
(Δ is the discriminant of P)
(small improvement of previous results of Benoît Rittaud)
Remark. We can give "explicit" generators corresponding to these decompositions.

Other Example. "Quadratic case, generalizing more Fibonacci". Let $P(X)=X^{2}-q X+p$, with $p, q \in \mathbb{Z}^{*}(+$ conditions). Let $\ell \geq 1$. Then:

- $\pm g_{\ell}=p^{\ell}-L_{\ell}+1$
- for $0 \leq i<\ell, b_{i}^{(\ell)}=p^{\ell-1-i}\left(F_{i}-F_{i-\ell}\right)$
- $\mathcal{G}_{\ell} \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$, with $n \mid m$ (m is the exponent of the group). It can be cyclic if $n=1$.
where
$\left(L_{n}\right)_{n \in \mathbb{Z}}$ is a Lucas-type sequence : $L_{0}=2, L_{1}=q, L_{n+2}=q L_{n+1}-p L_{n}$, $\left(F_{n}\right)_{n \in \mathbb{Z}}$ is a Fibonacci-type sequence : $F_{0}=1, F_{1}=q$, $F_{n+2}=q F_{n+1}-p F_{n}$.

Other Example. "Quadratic case, generalizing more Fibonacci". Let $P(X)=X^{2}-q X+p$, with $p, q \in \mathbb{Z}^{*}(+$ conditions). Let $\ell \geq 1$. Then:

- $\pm g_{\ell}=p^{\ell}-L_{\ell}+1$
- for $0 \leq i<\ell, b_{i}^{(\ell)}=p^{\ell-1-i}\left(F_{i}-F_{i-\ell}\right)$
- $\mathcal{G}_{\ell} \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$, with $n \mid m$ (m is the exponent of the group). It can be cyclic if $n=1$.
where
$\left(L_{n}\right)_{n \in \mathbb{Z}}$ is a Lucas-type sequence : $L_{0}=2, L_{1}=q, L_{n+2}=q L_{n+1}-p L_{n}$, $\left(F_{n}\right)_{n \in \mathbb{Z}}$ is a Fibonacci-type sequence : $F_{0}=1, F_{1}=q$, $F_{n+2}=q F_{n+1}-p F_{n}$.

Open questions

- Studying more precisely this case.
- Studying cases where P is not monic.
- Find more suitable algebraic/computationable tools.

Recall that $\left(g_{\ell}\right)_{\ell}$ is divisibility sequence: $g_{\ell} \mid g_{\ell \ell^{\prime}}$.
Theorem (Subgroups)
Let ℓ and ℓ^{\prime} be integers ≥ 1.
The map $\begin{array}{lll}\mathcal{G}_{\ell} & \longrightarrow \mathcal{G}_{\ell \ell^{\prime}} \\ W & \longmapsto & W^{\ell^{\prime}}\end{array}=(W \ldots W)$ (ℓ^{\prime} times $)$
is an injective morphism of \mathcal{G}_{ℓ} into $\mathcal{G}_{\ell \ell^{\prime}}$. So is $\mathcal{G}_{\ell^{\prime}}$ into $\mathcal{G}_{\ell \ell^{\prime}}$ by $W \mapsto W^{\ell}$. Considering \mathcal{G}_{ℓ} and $\mathcal{G}_{\ell^{\prime}}$ as subgroups of $\mathcal{G}_{\ell \ell^{\prime}}$, their intersection is equal to $\mathcal{G}_{g c d\left(\ell, \ell^{\prime}\right)}$:

$$
\mathcal{G}_{g c d\left(\ell, \ell^{\prime}\right)}=\mathcal{G}_{\ell} \cap \mathcal{G}_{\ell^{\prime}} \subset \mathcal{G}_{\ell}\left(\mathcal{G}_{\mathcal{K}^{\prime}}\right) \subset \mathcal{G}_{\ell \ell^{\prime}} .
$$

Recall that $\left(g_{\ell}\right)_{\ell}$ is divisibility sequence: $g_{\ell} \mid g_{\ell \ell^{\prime}}$.
Theorem (Subgroups)
Let ℓ and ℓ^{\prime} be integers ≥ 1.
The map $\begin{array}{lll}\mathcal{G}_{\ell} & \longrightarrow \mathcal{G}_{\ell \ell^{\prime}} \\ W & \longmapsto W^{\ell^{\prime}}\end{array}=(W \ldots W) \quad$ (ℓ^{\prime} times $)$
is an injective morphism of \mathcal{G}_{ℓ} into $\mathcal{G}_{\ell \ell^{\prime}}$. So is $\mathcal{G}_{\ell^{\prime}}$ into $\mathcal{G}_{\ell \ell^{\prime}}$ by $W \mapsto W^{\ell}$. Considering \mathcal{G}_{ℓ} and $\mathcal{G}_{\ell^{\prime}}$ as subgroups of $\mathcal{G}_{\ell \ell^{\prime}}$, their intersection is equal to $\mathcal{G}_{g c d\left(\ell, \ell^{\prime}\right)}$:

$$
\mathcal{G}_{g c d\left(\ell, \ell^{\prime}\right)}=\mathcal{G}_{\ell} \cap \mathcal{G}_{\ell^{\prime}} \subset \mathcal{G}_{\ell}\left(\mathcal{G}_{\mathcal{K}^{\prime}}\right) \subset \mathcal{G}_{\ell \ell^{\prime}} .
$$

We use the same type of algebraic tools as previous, and in particular the morphism of abelian groups:

$$
\begin{array}{ccc}
N_{\ell}: & \mathcal{G}_{\ell} & \longrightarrow \mathbb{Z} / g_{\ell} \mathbb{Z} \\
& \left(w_{0} \ldots w_{\ell-1}\right) & \longmapsto
\end{array} \sum_{0 \leq i<\ell} w_{i} b_{\ell-i}^{(\ell)}\left(\bmod g_{\ell}\right) .
$$

It can be considered as a numeration system on the abelian finite group \mathcal{G}_{ℓ}. When \mathcal{G}_{ℓ} is cyclic, it is an isomorphism.

Definition (Whole group of circular words)
We can define $\mathcal{G}=\underset{\longrightarrow}{\lim } \mathcal{G}_{\ell}$ the inductive limit of the groups \mathcal{G}_{ℓ} with respect to the morphisms $\begin{aligned} & \mathcal{G} \ell \longrightarrow \mathcal{G}_{m} \\ & W \longmapsto W^{m / \ell}\end{aligned}$, whenever ℓ divides m.

Addition of two circular words of different lengths.
Example:
Let $W=\left(w_{0} w_{1} w_{2}\right)$ and $W^{\prime}=\left(w_{0}^{\prime} w_{1}^{\prime}\right)$, then
$W+W^{\prime}=\left(w_{0} w_{1} w_{2} w_{0} w_{1} w_{2}\right)+\left(w_{0}^{\prime} w_{1}^{\prime} w_{0}^{\prime} w_{1}^{\prime} w_{0}^{\prime} w_{1}^{\prime}\right)$.
More generally:
If W (resp. W^{\prime}) is a circular word of length ℓ (resp. ℓ^{\prime}), then $W+W^{\prime}=W^{n / \ell}+W^{\prime n / \ell^{\prime}} \in \mathcal{G}_{n}$, with $n=\operatorname{lcm}\left(\ell, \ell^{\prime}\right)$.

The morphisms N_{ℓ} behaves well and we have:
Proposition (Numeration system on \mathcal{G})
The morphism $N: \mathcal{G} \rightarrow\left[0,1\left[\right.\right.$, such that for all $W \in \mathcal{G}_{\ell}$,

$$
N(W)=\left\{\frac{1}{g_{\ell}} N_{\ell}(W)\right\}=\left\{\frac{1}{g_{\ell}} \sum_{0 \leq i<\ell} w_{i} b_{\ell-i}^{(\ell)}\right\},
$$

where $\{x\}$ is the fractional part of x, is well defined.

This gives us a representation of some rationals in [0,1 [by a circular word, compatible with the addition and the carry equivalence defined by P.

Examples.

- "Base b": $(b \geq 2): P(X)=X-b, g_{\ell}=b^{\ell}-1, b_{i}^{(\ell)}=b^{\ell-1-i}$, $\mathcal{G}_{\ell} \simeq \mathbb{Z} /\left(b^{\ell}-1\right) \mathbb{Z}$. Then we have:

$$
N\left(\left(w_{0} \ldots w_{\ell-1}\right)\right)=\left\{\frac{1}{b^{\ell}-1} \sum_{0 \leq i<\ell} w_{i} b^{i-1}\right\} \in[0,1[
$$

Examples.

- "Base b": $(b \geq 2): P(X)=X-b, g_{\ell}=b^{\ell}-1, b_{i}^{(\ell)}=b^{\ell-1-i}$, $\mathcal{G}_{\ell} \simeq \mathbb{Z} /\left(b^{\ell}-1\right) \mathbb{Z}$. Then we have:

$$
N\left(\left(w_{0} \ldots w_{\ell-1}\right)\right)=\left\{\frac{1}{b^{\ell}-1} \sum_{0 \leq i<\ell} w_{i} b^{i-1}\right\} \in[0,1[
$$

It is similar to the expression we find when we consider the usual periodic expansion in base b :

$$
0 . \overline{w_{0} \cdots w_{\ell-1}}=\sum_{0 \leq i<\ell} w_{i} \sum_{k \geq 0} \frac{1}{b^{k \ell+i+1}}=\frac{1}{b^{\ell}-1} \sum_{0 \leq i<\ell} w_{i} b^{\ell-i-1} .
$$

We can then obtain all the rational numbers with denominators of the form $b^{\ell}-1$.

Examples.

- "Base b": $(b \geq 2): P(X)=X-b, g_{\ell}=b^{\ell}-1, b_{i}^{(\ell)}=b^{\ell-1-i}$, $\mathcal{G}_{\ell} \simeq \mathbb{Z} /\left(b^{\ell}-1\right) \mathbb{Z}$. Then we have:

$$
N\left(\left(w_{0} \ldots w_{\ell-1}\right)\right)=\left\{\frac{1}{b^{\ell}-1} \sum_{0 \leq i<\ell} w_{i} b^{i-1}\right\} \in[0,1[
$$

It is similar to the expression we find when we consider the usual periodic expansion in base b :
$0 . \overline{w_{0} \cdots w_{\ell-1}}=\sum_{0 \leq i<\ell} w_{i} \sum_{k \geq 0} \frac{1}{b^{k \ell+i+1}}=\frac{1}{b^{\ell}-1} \sum_{0 \leq i<\ell} w_{i} b^{\ell-i-1}$.
We can then obtain all the rational numbers with denominators of the form $b^{\ell}-1$.
For example, in base 10, we have an isomorphism of abelian groups:
$\mathcal{G} \quad \longrightarrow \quad E=\quad\{n \in[0,1[, n=a / 99 \cdots 9, a \in \mathbb{N}\}$
$W \quad N(W)$
E is the set of the rationals which are not decimal in $[0,1[$ (except 0).

Examples.

- "Rational base": $P(X)=p X-q$ ($q>p$ coprime $), g_{\ell}=q^{\ell}-p^{\ell}$,

$$
\begin{aligned}
& b_{i}^{(\ell)}=p^{i} q^{\ell-1-i}, \mathcal{G}_{\ell} \simeq \mathbb{Z} /\left(q^{\ell}-p^{\ell}\right) \mathbb{Z} . \text { Then we have: } \\
& \\
& N\left(\left(w_{0} \ldots w_{\ell-1}\right)\right)=\left\{\frac{1}{q^{\ell}-p^{\ell}} \cdot \frac{1}{q} \sum_{0 \leq i<\ell} w_{i} p^{\ell-i} q^{i}\right\} \in[0,1[
\end{aligned}
$$

Examples.

- "Rational base": $P(X)=p X-q$ ($q>p$ coprime $), g_{\ell}=q^{\ell}-p^{\ell}$, $b_{i}^{(\ell)}=p^{i} q^{\ell-1-i}, \mathcal{G}_{\ell} \simeq \mathbb{Z} /\left(q^{\ell}-p^{\ell}\right) \mathbb{Z}$. Then we have:

$$
N\left(\left(w_{0} \ldots w_{\ell-1}\right)\right)=\left\{\frac{1}{q^{\ell}-p^{\ell}} \cdot \frac{1}{q} \sum_{0 \leq i<\ell} w_{i} p^{\ell-i} q^{i}\right\} \in[0,1[
$$

It is similar to the expression we find when we consider periodic expansion in " base p / q ":
$0 . \overline{w_{0} \cdots w_{\ell-1}}=\sum_{0 \leq i<\ell} w_{i} \sum_{k \geq 0} \frac{p^{k \ell+i}}{q^{k \ell+i+1}}=\frac{1}{q^{\ell}-p^{\ell}} \cdot \frac{1}{q} \sum_{0 \leq i<\ell} w_{i} p^{i} q^{\ell-i}$.
So, we can represent all the rational numbers of $[0,1[$, whose denominators (irreducible form) are coprime with p and q, by a circular word of finite length.

Examples.

- "Rational base": $P(X)=p X-q(q>p$ coprime $), g_{\ell}=q^{\ell}-p^{\ell}$, $b_{i}^{(\ell)}=p^{i} q^{\ell-1-i}, \mathcal{G}_{\ell} \simeq \mathbb{Z} /\left(q^{\ell}-p^{\ell}\right) \mathbb{Z}$. Then we have:

$$
N\left(\left(w_{0} \ldots w_{\ell-1}\right)\right)=\left\{\frac{1}{q^{\ell}-p^{\ell}} \cdot \frac{1}{q} \sum_{0 \leq i<\ell} w_{i} p^{\ell-i} q^{i}\right\} \in[0,1[
$$

It is similar to the expression we find when we consider periodic expansion in " base p / q ":
$0 . \overline{w_{0} \cdots w_{\ell-1}}=\sum_{0 \leq i<\ell} w_{i} \sum_{k \geq 0} \frac{p^{k \ell+i}}{q^{\ell \ell+i+1}}=\frac{1}{q^{\ell}-p^{\ell}} \cdot \frac{1}{q} \sum_{0 \leq i<\ell} w_{i} p^{i} q^{\ell-i}$.
So, we can represent all the rational numbers of $[0,1[$, whose denominators (irreducible form) are coprime with p and q, by a circular word of finite length.
Numerical example: Consider $P(X)=2 X-3$.
For $a=2 / 35: \quad \ell=6, g_{6}=665=35 * 19, a=N((201021))$.
For $b=1 / 5: \quad \ell=2, g_{2}=5, b=N((02))=N((020202))$.
Then $a+b=9 / 35=N((221223))=N((110112))$.

Examples.

- "Fibonacci" : $P(X)=X^{2}-X-1$.

With the Fibonacci sequence: $f_{0}=0, f_{1}=1, f_{n+2}=f_{n+1}+f_{n}$, we obtain: $g_{\ell}=f_{\ell-1}+f_{\ell+1}-1+(-1)^{\ell+1}$ and

$$
\begin{aligned}
N\left(\left(w_{0} \ldots w_{\ell-1}\right)\right) & =\left\{\frac{1}{g_{\ell}} \sum_{0 \leq i<\ell} w_{i}\left[f_{i}+(-1)^{i} f_{\ell-i}\right]\right\} \\
& =\left\{\frac{1}{g_{\ell}} \sum_{0 \leq i<\ell} w_{i}\left[f_{i}+(-1)^{\ell+1} f_{-\ell+i}\right]\right\} \in[0,1[
\end{aligned}
$$

Examples.

- "Fibonacci" : $P(X)=X^{2}-X-1$.

With the Fibonacci sequence: $f_{0}=0, f_{1}=1, f_{n+2}=f_{n+1}+f_{n}$, we obtain: $g_{\ell}=f_{\ell-1}+f_{\ell+1}-1+(-1)^{\ell+1}$ and

$$
\begin{aligned}
N\left(\left(w_{0} \ldots w_{\ell-1}\right)\right) & =\left\{\frac{1}{g_{\ell}} \sum_{0 \leq i<\ell} w_{i}\left[f_{i}+(-1)^{i} f_{\ell-i}\right]\right\} \\
& =\left\{\frac{1}{g_{\ell}} \sum_{0 \leq i<\ell} w_{i}\left[f_{i}+(-1)^{\ell+1} f_{-\ell+i}\right]\right\} \in[0,1[
\end{aligned}
$$

Links with usual Fibonacci numeration system ?
Numerical example: $\ell=5, g_{5}=11$,
$N((10000))=5 / 11, N((01000))=9 / 11, N((00100))=3 / 11$,
$N((00010))=1 / 11, N((00001))=4 / 11, N((10100))=8 / 11$,
$N((10010))=6 / 11, N((01010))=10 / 11, N((01001))=2 / 11$,
$N((00101))=7 / 11$

Work in progress - Open questions. For a fixed polynomial P (or a family of polynomials):

- Describe the rationals which are in $N(\mathcal{G})$, determine the smallest integer ℓ such that $a \in N\left(\mathcal{G}_{\ell}\right)$.
- For $a \in N\left(\mathcal{G}_{\ell}\right)$, give an efficient algorithm to find the circular word corresponding to a. Greedy-style algorithm ?
- For a real x in $[0,1[$, can we find a sequence of circular words whose values converge towards x ? Study the convergence of the values of some sequences of words.
- What are the canonical representations of a circular word in terms of conditions on the digits ?
(already made for the cases $X-b, p X-q, X^{2}-k X-1$)
- When p is a primitive prime factor of g_{ℓ}, there is a subgroup isomorphic to $\mathbb{Z} / p \mathbb{Z}$, not being a \mathcal{G}_{n}. What is his interpretation ?
- When the \mathcal{G}_{ℓ} are not cyclic, for example are isomorphic to $E=\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$, each element of E as a unique representation by a circular word.
Representation by a word of a couple $(a, b) \in\left[0,1\left[^{2}\right.\right.$: interpretation ?

Work in progress - Open questions.

- Other questions...
- And of course more connections to usual topics in numeration.... ?

Thank you!

國 Benoît Rittaud, "Structure of Classes of Circular Words defined by a Quadratic Equivalence", RIMS Kôkyûroku Bessatsu, B 46, 231-239 (2014-06).

Benoît Rittaud \& Laurent Vivier, "Circular words and three applications: factors of the Fibonacci word, \mathcal{F}-adic numbers, and the sequence 1, 5, 16, 45, 121, 320,...", Functiones et Approximatio 47, $\mathrm{n}^{\circ} 2$, 207-231 (2012).

