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Starting point:
Consider the addition of two rationals, but focus only on the periods.

Let A =178/55 = 3,236... and B =421/330 =1,275.. ..
Then A+ B =4,512....
Or, if we make only the addition for the periods we have:

6+75=1011 ~ (10+1) (11 —-10)=(11) 1
~ (11-10) (1+1)=12
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Starting point:
Consider the addition of two rationals, but focus only on the periods.

Let A =178/55 = 3,236... and B =421/330 =1,275.. ..
Then A+ B =4,512....
Or, if we make only the addition for the periods we have:

6+75=1011 ~ (10+1) (11 —-10)=(11) 1
~ (11-10) (1+1)=12

We can interpret this operation in term of an addition of two circular
words of length 2, with respect to the base 10 numeration:
(3 6) + (7 5) bhase 10 (1 2)
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Starting point:
Consider the addition of two rationals, but focus only on the periods.

Let A =178/55 = 3,236... and B =421/330 =1,275.. ..
Then A+ B =4,512....
Or, if we make only the addition for the periods we have:

6+75=1011 ~ (10+1) (11 —-10)=(11) 1
~ (11-10) (1+1)=12

We can interpret this operation in term of an addition of two circular
words of length 2, with respect to the base 10 numeration:
(3 6) + (7 5) bhase 10 (1 2)

The notion of circular word was first introduced by B. Rittaud and L.
Vivier (2011-2012), in the context of the Fibonacci numeration.

| have discovered this notion when Benoit gave a talk on this topic in
Nancy, which led to a collaboration.
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Presentation Outline

© Motivations

© Group of circular words of length ¢
@ Definition - Group of circular words of length /¢
@ Order of the group
@ Structure of the group
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@ Numeration system - Representation of some rationals
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Group of circular words of length £ Definition - Group of circular words of length £

Let £ € N* be fixed.
Definition (Circular word of length /)

A circular word of length ¢ is a finite word (wyg ... w; ... wp_1) made of £
letters on the alphabet Z and indexed by Z//(Z.

The set of circular words of length £ is an abelian group:
W+ W' = ((wo +w) ... (w; +wh) ... (we_1 +wy_q))
Let P be an integral polynomial P(X) =3 ;4 a; X' € Z[X] (d € N*).

Definition (Carry equivalence defined by P)

The carry equivalence ~p defined by P on circular words
W = (wq...we_1) is based on the relations: for all i« modulo ¢,
W ~p (w(] c.. (wi_d + ao) S (wi_l + ad_l)(wi + ad)wi_H e wg_l).
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Group of circular words of length £ Definition - Group of circular words of length £
% .
Let ¢ € N* be fixed.

Definition (Circular word of length /)

A circular word of length ¢ is a finite word (wyg ... w; ... wp_1) made of £
letters on the alphabet Z and indexed by Z//(Z.

The set of circular words of length £ is an abelian group:
W+ W' = ((wo +w) ... (w; +wh) ... (we_1 +wy_q))
Let P be an integral polynomial P(X) =3 ;4 a; X' € Z[X] (d € N*).

Definition (Carry equivalence defined by P)

The carry equivalence ~p defined by P on circular words
W = (wq...we_1) is based on the relations: for all i« modulo ¢,
W ~p (w(] c.. (wi_d + ao) S (wi_l + ad_l)(wi + ad)wi_H e wg_l).

Example. "Fibonacci” P(X)=X?—-X —1,(=4.
(1234) ~p (0144) ~p (4100) ~p (3010) =p (211(-1))
~p (2000) ~p (1011) =p (0110) ~p (0001)
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Definition - Group of circular words of length £
Given: £ € N*, P(X) =Y ;cqaiX" € Z[X].
Let o be the shift transformation defined by
O’((wo e wg_l)) = (w1 ce wg_lwo).
Let Ay := (ao e @...ag0. .. 0), if £ >d, resp. := ((ijz’ mod ¢ aj)i) if
{ < d, be the circular word associated to P.

Definition (Group of circular words with carry equivalence)

The carry equivalence ~p defined by P on circular words of length £ is :

W ~p W' if and only if there exists (v, ..., v, 1) € Z¢ such that
W=w'+ ZOSiSE—l vio " (Ayp).

Let Gy p be the abelian quotient group of circular words of length ¢ by this
carry equivalence.

Isabelle Dubois Algebraic structure and numeration systems for circular words Numeration - June 2017 5/18



Definition - Group of circular words of length £
Given: £ € N*, P(X) =Y ;cqaiX" € Z[X].
Let o be the shift transformation defined by
O’((wo e wg_l)) = (w1 ce wg_lw(]).
Let Ay := (ao e @...ag0. .. 0), if £ >d, resp. := ((iji mod ¢ aj)i) if
{ < d, be the circular word associated to P.

Definition (Group of circular words with carry equivalence)

The carry equivalence ~p defined by P on circular words of length £ is :
W ~p W' if and only if there exists (v, ..., v, 1) € Z¢ such that
W =W"+3 gcico1vio " (Ar).

Let Gy p be the abelian quotient group of circular words of length ¢ by this
carry equivalence.

V.

Examples.
@ "Base2": P(X)=X—-2,0=2,G,p={(00),(10),(01)}
@ "Fibonacci": P(X) = X2 —-X—1,0=4,
Gup = {(0000),(1000),(0100),(0010),(0001)}.
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Group of circular words of length £ Definition - Group of circular words of length £

The group of circular words of length £ with a carry P can be studied via
algebraic isomorphisms between Gy p and the:

@ Set of equivalent points on the action of the ¢ x £ circulant matrix
whose first row is A, (or associated to P) on the lattice group Z.

@ Abelian group (for +) of the quotient ring of integral polynomials
Z[X]/(P(X), X" —1). The multiplication by X correspond to the
inverse of the shift transformation.
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Group of circular words of length £ Definition - Group of circular words of length £

The group of circular words of length £ with a carry P can be studied via
algebraic isomorphisms between Gy p and the:

@ Set of equivalent points on the action of the ¢ x £ circulant matrix
whose first row is A, (or associated to P) on the lattice group Z.

@ Abelian group (for +) of the quotient ring of integral polynomials
Z[X]/(P(X), X" —1). The multiplication by X correspond to the
inverse of the shift transformation.

Proposition (Finite group)
Ge,p is a finite abelian group if and only if P has no (-th roots of unity J

From now on:
Assumption: P has no roots of unity.
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Definition - Group of circular words of length £
The group of circular words of length £ with a carry P can be studied via
algebraic isomorphisms between Gy p and the:
@ Set of equivalent points on the action of the ¢ x £ circulant matrix
whose first row is A, (or associated to P) on the lattice group Z.

@ Abelian group (for +) of the quotient ring of integral polynomials
Z[X]/(P(X), X" —1). The multiplication by X correspond to the
inverse of the shift transformation.

Proposition (Finite group)
Ge,p is a finite abelian group if and only if P has no (-th roots of unity J

From now on:
Assumption: P has no roots of unity.

Links with other topics:
- dynamical systems : periodic points for toral endomorphisms
- cyclic resultants, for producing large primes
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Group of circular words of length £ Order of the group

Let g, p be the order of the group G, p. We have:

Proposition (Properties of the order of the group)

(i) ge,p = [Resultant(P(X), X* — 1)| = | [Tgcper P(e¥™/1)].

(ii) (ge,p)e is a divisibility sequence.

(iii) Exponential growth : limy_, o Ingy p/¢ =In M(P),
where M (P) is the Mahler measure of P.

(iv) Apparition of primitive prime factors : If P is monic and
irreducible, there are infinite primitive prime factors in the sequence
(ge,p)e (and more finer results).
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Group of circular words of length £ Order of the group

Let g, p be the order of the group G, p. We have:

Proposition (Properties of the order of the group)

(i) ge,p = [Resultant(P(X), X* — 1)| = | [Tgcper P(e¥™/1)].

(ii) (ge,p)e is a divisibility sequence.

(iii) Exponential growth : limy_, o Ingy p/¢ =In M(P),
where M (P) is the Mahler measure of P.

(iv) Apparition of primitive prime factors : If P is monic and
irreducible, there are infinite primitive prime factors in the sequence
(ge,p)e (and more finer results).

Example. Fibonacci case, (gy x2_x_1)¢=sequence A001350 " Associated
Mersenne numbers”. First primitive prime factors: 2, 5, 11, 13, 29, 3, 19,
199, 521, 31, 7, 3571....

Open questions.

Find more generalized/deeper results on primitive prime factors.

Case of P not monic ?
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Group of circular words of length £ Structure of the group

From now, we omit the dependance on P.
Let BO(X) = > 0<i<t b(Z X be the integral polynomial such that

9o = P(X)BO(X) + (X! = 1) Ygicqs v\ X7,

Proposition (Structure of the group)

(i) The word Gy := (10°~1) is an element of maximal order.
(i) The exponent of the group Gy is equal to g;/ gcd((by)), (vj(.g))).

(iii) The group Gy is cyclic generated by G, if and only ifgcd(bl(-z), gr) =1

. . ¢ .
for some (or any) i. In this case, the sequence (bf ) (mod gy)); is
geometric, and the inverse of its common ratio, is a root of the

polynomial P and a (-th root of unity in Z/g,Z.
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Group of circular words of length £ Structure of the group

From now, we omit the dependance on P.
Let BO(X) = > 0<i<t b(Z X be the integral polynomial such that

W—Puw@wwwﬂ—nz@gqﬁwﬁ

Proposition (Structure of the group)

(i) The word Gy := (10°~1) is an element of maximal order.

(i) The exponent of the group Gy is equal to g;/ gcd((by)), (vj(»g))).

(iii) The group Gy is cyclic generated by G, if and only ifgcd(bl(-z), gr) =1

for some (or any) i. In this case, the sequence (bz(.z) (mod gy)); is
geometric, and the inverse of its common ratio, is a root of the
polynomial P and a (-th root of unity in Z/g,Z.

Examples.
o "Base b": (b>2): P(X) =X —b, gp=0b—1, b =pt-1-1,
Go = ((10°°Y)) = Z/(b* — 1)Z.
e "Rational base": P(X) = pX —q (q > p coprime), g, = ¢* — p,
b = pig 1, Gy = ((10)) ~ Z2/(¢' —p)Z.
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Group of circular words of length £ Structure of the group

In order to describe more precisely the structure of any group G,, we have
to use more algebraic tools.

A simple tool is to use Bezout's relations between P and X* — 1 (as for
the previous proposition). But it is difficult to obtain general results for
certain classes of polynomials.

Example. " Quadratic case, generalizing Fibonacci”
Let P(X) = X? — kX — 1, with k € N*. Then we have:

e If /is odd, then Gy ~ Z/g,Z, except for £ € 3N and k odd, where
Go~7/ge/27 x 7.]27.
o If {=2mod 4, then Gy ~ Z/\/giZ x L] \/Gi L.

o If £ =0mod 4, then Gy ~ Z/\/AgiZ x L]/ ge/ AZ (case k odd), or

Go ~7/\/Age/AZ x L] \/4gs ) AZ (case k even).
(A is the discriminant of P)

(small improvement of previous results of Benoit Rittaud)
Remark. We can give "explicit” generators corresponding to these
decompositions.
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Other Example. "
Let P(X) = X?
Then:

Quadratic case, generalizing more Fibonacci”.
—qX + p, with p,q € Z* (4 conditions). Let ¢ > 1.

o tgr=p'—Li+1
e for 0 <i </, b() p! =1 (F — Fi_y)

e Gy~ Z/mZ x Z/nZ, with n|m (m is the exponent of the group).
It can be cyclicif n = 1.

where

(Lp)nez is a Lucas-type sequence : Lo =2, L1 = q, Lpt12 = qLp4+1 — pLn,
(Fy)nez is a Fibonacci-type sequence : Fy =1, F1 = gq,

Fn+2 = anJrl — pky,.

Isabelle Dubois
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Group of circular words of length £ Structure of the group

Other Example. "Quadratic case, generalizing more Fibonacci”.
Let P(X) = X2 — ¢X + p, with p,q € Z* (+ conditions). Let £ > 1.
Then:
o tgr=p'—Li+1
e for 0 <i </, b() p! =1 (F — Fi_y)
e Gy~ Z/mZ x Z/nZ, with n|m (m is the exponent of the group).
It can be cyclicif n = 1.

where

(Lp)nez is a Lucas-type sequence : Lo =2, L1 = q, Lpt12 = qLp4+1 — pLn,
(Fy)nez is a Fibonacci-type sequence : Fy =1, F1 = gq,

Fn+2 = anJrl — pky,.

Open questions
@ Studying more precisely this case.
@ Studying cases where P is not monic.
e Find more suitable algebraic/computationable tools.
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Group of circular words of length £ Subgroups

Recall that (g¢)¢ is divisibility sequence: g¢|gee .

Theorem (Subgroups)

Let ¢ and ¢’ be integers > 1.

G — Guw

W — WC=W...W) (¢ times)

is an injective morphism of Gy into Gyy. So is Gy into Gy by W +— W¥.
Considering Gy and Gy as subgroups of Gy, their intersection is equal to

ggcd(@,e’)

The map

Gyede,ery = Ge NGy C Go(Ger) C Gupr-
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Group of circular words of length £ Subgroups

Recall that (g¢)¢ is divisibility sequence: g¢|gee .

Theorem (Subgroups)

Let ¢ and ¢’ be integers > 1.

G — Guw

W — WC=W...W) (¢ times)

is an injective morphism of Gy into Gyy. So is Gy into Gy by W +— W¥.
Considering Gy and Gy as subgroups of Gy, their intersection is equal to
ggcd(@,e’) :

The map

Gyede,ery = Ge NGy C Go(Ger) C Gupr-

We use the same type of algebraic tools as previous, and in particular the
morphism of abelian groups:

Ny Ge — Z/QZZ
(w() ce wg_l) — Z wzby_)z (mod gz).
0<i<t

It can be considered as a numeration system on the abelian finite group Gy.
When Gy is cyclic, it is an isomorphism.
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Numeration system and representation of rationals in [0, 1[ ERWAIIEW-AZITReI NI ET@WIZ: [

Definition (Whole group of circular words)

We can define G = lim G, the inductive limit of the groups G, with respect
—

gZ —>gm

W s m/t whenever ¢ divides m.

to the morphisms

Addition of two circular words of different lengths.
Example:

Let W = (wowjwsz) and W' = (wjw}), then

W+ W' = (wowiwawowiws) + (wiw|wiw]wiw)).

More generally:
If W (resp. W') is a circular word of length ¢ (resp. ¢'), then
W+ W =Wt L W/t G, withn = lem(¢, ¢').
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Numeration system and representation of rationals in [0, 1[ Numeration system - Representation of some rationals

The morphisms N, behaves well and we have:

Proposition (Numeration system on G)
The morphism N : G — [0,1], such that for all W € Gy,
1 1 ¢
NW) = {Ne(W)} = D7 wib},
gt 9t o<ize
where {x} is the fractional part of x, is well defined.

This gives us a representation of some rationals in [0, 1] by a circular word,
compatible with the addition and the carry equivalence defined by P.
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Numeration system and representation of rationals in [0, 1[ EESEMPBIES

Examples.
@ "Base b": (b>2): P(X)=X —b, g =0 —1, bz@) — pt-1-i,
Gy ~ 7/ (b* —1)Z. Then we have:

N((wo ... wp_1)) = {ﬁ S wibi 'y e [0,1]
0<i<t
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Numeration system and representation of rationals in [0, 1[ EESElES

Examples.
@ "Base b": (b>2): P(X)=X —b, g =0 —1, bz@) — pt-1-i,
Gy ~ 7/ (b* —1)Z. Then we have:

N((wo ... wp_1)) = {ﬁ S wibi 'y e [0,1]
0<i<t

It is similar to the expression we find when we consider the usual
periodic expansion in base b:

1 1 r—i
S — } g l—i—1
0wy -~ wy_1 = g w; g A v g w;b )
0<i<t k>0 0<i<t

We can then obtain all the rational numbers with denominators of the
form bt — 1.
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Numeration system and representation of rationals in [0, 1[ EESElES

Examples.
@ "Base b": (b>2): P(X)=X —b, g =0 —1, bz@) — pt-1-i
Gy ~ 7/ (b* —1)Z. Then we have:

N((wo ... wp_1)) = {ﬁ S wibi 'y e [0,1]

0<i<t

It is similar to the expression we find when we consider the usual
periodic expansion in base b:

0wy w1 =y wiy WL.H = bgl_l 3wt

0<i<t k>0 0<i<?

We can then obtain all the rational numbers with denominators of the
form bt — 1.
For example, in base 10, we have an isomorphism of abelian groups:
G — E= {ne€l0,1[n=a/99---9, a € N}
W +— N((W)
E is the set of the rationals which are not decimal in [0, 1] (except 0).
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Numeration system and representation of rationals in [0, 1[ EESEMPBIES

Examples.

o "Rational base": P(X) = pX —q (q > p coprime), g, = ¢* — p,

bgz) =pi¢" 1, G~ 7/ (¢ — Z) Then we have:
N((wo...wp—1)) ={—— - Z wip' i’} € [0,1]

0<7,<€
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Numeration system and representation of rationals in [0, 1[ EESElES

Examples.
o "Rational base": P(X) = pX —q (q > p coprime), g, = ¢* — p,
b( ) = =pig" 17 G~ 7/ (¢ —p 7. Then we have:
N((wo...”uwfﬂ):{qg Z wzpe ‘ 1}6 [0,1]

0<z<€
It is similar to the expression we find when we consider periodic

expansion in "base p/q":
kZ—I—z

0w+~ we—1 = Z wlz k£+z+1:q )t Z wip'q"".

0<i<t k>0 0<Z<Z

So, we can represent all the rational numbers of [0, 1], whose
denominators (irreducible form) are coprime with p and ¢, by a
circular word of finite length.
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Numeration system and representation of rationals in [0, 1[ EE=EHIBET

Examples.
o "Rational base": P(X) = pX —q (q > p coprime), g, = ¢* — p,
b() pig=17 Gy~ 7/ (¢ —p 7. Then we have:
N((wo...’wbﬂ):{qg Z wzpe ‘ 1}6 [0,1]

0<z<€
It is similar to the expression we find when we consider periodic

expansion in "base p/q":

kZ—I—z

0w+~ we—1 = Z wlz k£+z+1:q )t Z wip'q"".

0<i<t k>0 0<Z<Z

So, we can represent all the rational numbers of [0, 1], whose
denominators (irreducible form) are coprime with p and ¢, by a
circular word of finite length.

Numerical example: Consider P(X) = 2X — 3.

For a =2/35: £ =6, g6 =665 =35%19, a = N((201021)).
Forb=1/5:{=2,g2=5b=N((02)) =N((020202)).
Thena+b=9/35=N((221223)) =N((110112)).
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Numeration system and representation of rationals in [0, 1[ Examples

Examples.
e "Fibonacci”: P(X)=X?—-X —1.
With the Fibonacci sequence: fo =0, fi =1, fato = fo+r1 + fn,
we obtain: g, = fr_1 + fZJrl -1+ (—1)Z+1 and

N((w() .. .’wgfl)) = {gl Z Wy [fz + (_1)iféfi]}

to<i<r

= (= 3w A (D e]) € 0]

9t iz
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Numeration system and representation of rationals in [0, 1[ EESElES

Examples.
e "Fibonacci”: P(X)=X?—-X —1.
With the Fibonacci sequence: fo =0, fi =1, fato = fo+r1 + fn,
we obtain: gy = fg,l + fZJrl -1+ (—1)Z+1 and

N((wo .. .’u)gfl)) = {gl Z Wy [fz + (_1)if€fi]}

to<i<r

= (= 3w A (D e]) € 0]

ge 0<i<t

Links with usual Fibonacci numeration system ?

Numerical example: ¢ =5, g5 = 11,

N((10000)) =5/11, N((01000)) =9/11, N((00100)) = 3/11,
N((00010)) =1/11, N((00001)) =4/11, N((10100)) = 8/11,
N((10010)) =6/11, N((01010)) =10/11, N((01001)) = 2/11,
N((00101))="7/11
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Work in progress - Open questions. For a fixed polynomial P (or a family
of polynomials):

Describe the rationals which are in N(G), determine the smallest
integer ¢ such that a € N(Gy).

For a € N(Gy), give an efficient algorithm to find the circular word
corresponding to a. Greedy-style algorithm 7

For a real z in [0, 1], can we find a sequence of circular words whose
values converge towards x 7 Study the convergence of the values of
some sequences of words.

What are the canonical representations of a circular word in terms of
conditions on the digits ?

(already made for the cases X — b, pX —¢q, X2 — kX —1)

When p is a primitive prime factor of g, there is a subgroup
isomorphic to Z/pZ, not being a G,,. What is his interpretation ?
When the G, are not cyclic, for example are isomorphic to

E =7Z/mZ x Z/nZ, each element of E as a unique representation by
a circular word.

Representation by a word of a couple (a,b) € [0, 1[: interpretation ?
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Work in progress - Open questions.
@ Other questions...

@ And of course more connections to usual topics in numeration.... 7

Thank you !
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[@ Benoit RITTAUD, “Structure of Classes of Circular Words defined by a
Quadratic Equivalence”, RIMS Kékyiiroku Bessatsu, B 46, 231-239

(2014-06).

ﬁ Benoit RITTAUD & Laurent VIVIER, “Circular words and three
applications: factors of the Fibonacci word, F-adic numbers, and the
sequence 1, 5, 16, 45, 121, 320,...", Functiones et Approximatio 47,
n°2, 207-231 (2012).
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