
NEW COHOMOLOGICAL INVARIANTS OF FOLIATIONS

GEORGES HABIB AND KEN RICHARDSON

Abstract. Given a smooth foliation on a closed manifold, basic forms are differential forms that
can be expressed locally in terms of the transverse variables. The space of basic forms yields a
differential complex, because the exterior derivative fixes this set. The basic cohomology is the
cohomology of this complex, and this has been studied extensively. Given a Riemannian metric,
the adjoint of the exterior derivative maps the orthogonal complement of the basic forms to itself,
and we call the resulting cohomology the “antibasic cohomology”. Although these groups are
defined using the metric, the dimensions of the antibasic cohomology groups are invariant under
diffeomorphism and metric changes. If the underlying foliation is Riemannian, the groups are
foliated homotopy invariants that are independent of basic cohomology and ordinary cohomology
of the manifold. For this class of foliations we use the codifferential on antibasic forms to obtain
the corresponding Laplace operator, develop its analytic properties, and prove a Hodge theorem.
We then find some topological and geometric properties that impose restrictions on the antibasic
Betti numbers.

1. Introduction

The ordinary Hodge decomposition theorem on a closed Riemannian manifold (M, g) of dimen-
sion n gives an L2-orthogonal decomposition of differential forms:

Ωk (M) = im (dk−1)⊕Hk ⊕ im (δk+1) , 0 ≤ k ≤ n,
where dk : Ωk (M) → Ωk+1 (M) is the exterior derivative with L2-adjoint δk+1 : Ωk+1 (M) →
Ωk (M), and where Hk = ker (∆k) is the space of harmonic k-forms. Note also that

ker (dk) = im (dk−1)⊕Hk and ker (δk) = Hk ⊕ im (δk+1) .

From this we get that the de Rham cohomology groups satisfy Hk (M) ∼= Hk. Now, an alternative
way of looking at this is to define a “new” de Rham homology Hk

δ (M) using δ instead of d: δ2 = 0,
so

Hk
δ (M) =

ker δk
im δk+1

, 0 ≤ k ≤ n,

is well-defined. By the equations above for ker δk and ker dk, H
k
δ (M) ∼= Hk

d (M). So no one ever

defines Hk
δ (M) separately, because it does not provide anything new, and it seems to require a

metric.
We consider however the situation where M is endowed with a smooth foliation F of codimension

q. Many researchers have studied the properties of basic forms on foliations (see [13] for the original
work and the expositions [15], [11], [20] and the references therein). Specifically, the basic forms are
differential forms on M that locally depend only on the transverse variables. Because the exterior
derivative preserves the set Ω∗b (M) of basic forms, one can define the basic cohomology groups as

Hk
b (M,F) :=

ker
(
d : Ωk

b (M)→ Ωk+1
b (M)

)
im
(
d : Ωk−1

b (M)→ Ωk
b (M)

) , 0 ≤ k ≤ q.
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These cohomology groups are invariants of the foliation and can in general be infinite dimensional
even when M is compact. The isomorphism classes of these groups are invariant under any homo-
topy equivalence between foliations that preserve the leaves. For certain classes of foliations, such
as Riemannian foliations, these cohomology groups are finite dimensional.

Let L2 (Ω∗b (M)) denote the completion of the space of smooth basic forms with respect to the
L2 inner product on differential forms on M . This is a subspace of the Hilbert space of differential
forms with respect to this same inner product. Since the latter Hilbert space is complete, the
subspace is the same as the closure of the space of smooth basic forms with respect to the L2

norm. Since d preserves the smooth basic forms as mentioned previously, the formal adjoint δ
of d with respect to the L2 inner product preserves the smooth forms inside the L2 orthogonal

complement (Ω∗b (M))⊥, and we denote the set of smooth forms in this subspace by Ω∗a (M, g), the
set of “antibasic forms”. Because δ2 = 0 on this space, we may define the “antibasic cohomology
groups” as

Hk
a (M,F , g) :=

ker
(
δ : Ωk

a (M, g)→ Ωk−1
a (M, g)

)
im
(
δ : Ωk+1

a (M, g)→ Ωk
a (M, g)

) , 0 ≤ k ≤ n.

We see that Hk
a (M,F , g) depends on the choice of g, but we show that the isomorphism classes of

these groups are independent of this choice (Theorem 2.1) and are in fact invariants of the smooth
foliation structure (Corollary 2.2). For that reason, we henceforth remove the background metric g
from the notation. Unlike the case of the de Rham cohomology of ordinary manifolds defined using
δ above, these cohomology groups provide new invariants of the foliation, which are not necessarily
isomorphic to either the basic or ordinary de Rham cohomology groups.

We are interested in whether these new foliation invariants give obstructions to certain types of
geometric structures on the manifolds and foliations. In Theorem 2.5 we show that if the foliation
is codimension one on a connected manifold, and if the mean curvature form of the normal bundle

is everywhere nonzero, then H0
a (M) = {0}, and Hj

a (M) = Hj (M) for j ≥ 1.
Starting with Section 3, we consider the case of Riemannian foliations, where the normal bundle

carries a holonomy invariant metric; c.f. [14], [11], [20]. As is customary, we choose a bundle-like
metric, one such that the leaves of the foliation are locally equidistant. In this particular case,
the geometry forces many consequences for the antibasic cohomology. One crucial property of
Riemannian foliations that allows us to proceed with analysis is that the L2 orthogonal projection
Pb from all forms to basic forms preserves smoothness. This was shown in [12] and [1], and it is
false in general for non-Riemannian foliations (see Example 9.4). As a consequence, it is also true
that the L2 orthogonal projection Pa from all forms to antibasic forms preserves smoothness. In
Proposition 3.1, we derive explicit formulas for the commutators [d, Pa] and [δ, Pa], which are zeroth
order operators that are in general not pseudodifferential. These formulas allow us to express the
antibasic Laplacian ∆a = (Pa (d+ δ)Pa)

2 in terms of elliptic operators on all forms in Theorem
4.1. That is, ∆a can be written in terms of the ordinary Laplacian ∆ on M by the formula

∆a = (∆ + δPbε
∗ + Pbε

∗δ)Pa,

where ε∗ is a zeroth order differential operator determined by the geometry of the foliation and
defined explicitly in Proposition 3.1.

Because ∆a and Da = Pa (d+ δ)Pa are similar to elliptic differential operators but are in general
not pseudodifferential, we do not necessarily expect them to satisfy the usual properties of Laplace
and Dirac operators. However, in Section 5, we are able to show many of the functional analysis
results with a few modifications. Specifically, we prove a version of G̊arding’s Inequality (Lemma
5.2), the elliptic estimates (Lemma 5.5), and the essential self-adjointness of both Da and ∆a

(Corollary 5.12). Also, we show that elliptic regularity holds (Proposition 5.13), and finally we prove
the spectral theorem (Theorem 5.17) for ∆a = D2

a and Da, showing that there exists a complete
orthonormal basis of L2 (Ω∗a (M)) consisting of smooth eigenforms of Da, and the eigenvalues of ∆a
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have finite multiplicity and accumulate only at +∞. In all of these cases, the proofs are a bit more
complicated than usual because of the antibasic projection and the issue of operators not being
pseudodifferential.

In Section 6, we are able to prove the Hodge theorem and decomposition (Theorem 6.1 and
Corollary 6.5) for the antibasic forms, again only for the Riemannian foliation case. For these
foliations, there is an alternate way of expressing the antibasic cohomology, using da = PadPa as a
differential. Then it turns out that if f : (M,F) → (M ′,F ′) is a foliated map, which takes leaves
into leaves, then Paf

∗P ′a induces a linear map on da-cohomology. We show that for Riemannian
foliations, the isomorphism classes of antibasic cohomology groups are foliated homotopy invariants;
see Theorem 6.8 and Corollary 6.9. We do know in general that the antibasic Betti numbers are
foliated diffeomorphism invariants, but it is an open question whether they are foliated homotopy
invariants; see Problem 1 and the preceding discussion.

In Section 7, we prove identities for antibasic cohomology in special cases. If the foliation is
Riemannian, then H0

a (M,F) ∼= {0} and

dimH1 (M) ≤ dimH1
b (M,F) + dimH1

a (M,F) ;

see Proposition 7.5 and Proposition 7.6. If in addition the normal bundle is involutive, then for all
k,

Hk (M) ∼= Hk
b (M,F)⊕Hk

a (M,F) ,

by Proposition 7.1. In the special case where the Riemannian foliation is the set of orbits of a
connected, compact Lie group of isometries, we show that antibasic cohomology can be computed
using only the subspace of invariant differential forms; see Proposition 7.8.

The case of Riemannian flows is investigated in Section 8. In this setting, we are able to char-
acterize H1

a (M,F). We prove in Proposition 8.1 that when the flow is taut, meaning that there
exists a metric for which the leaves are minimal,

dim
(
Hr+1
a (M,F)

)
≥ dim (Hr

b (M,F))

for r ≥ 0. In the particular case where H1 (M) = {0} and M is connected, we get H1
a (M) ∼= R

always (Theorem 8.4). On the other hand, if M is connected and the flow is nontaut, we have that
H1
a (M) ∼= {0}.
In Section 9, we compute the antibasic cohomology of specific foliations in low dimensions.

These examples include Riemannian and non-Riemannian foliations and illustrate the results we
have proved.

2. Basic and antibasic cohomology of foliations

Let M be a smooth, closed manifold, and let F be a smooth foliation on M of codimension q
and dimension p (i.e. the dimension of M is n = p + q). The subspace Ωb (M) ⊆ Ω (M) of basic
differential forms is defined as

Ωb (M) = {β ∈ Ω (M) : Xyβ = 0, Xydβ = 0 for all X ∈ Γ (TF)}
where Xy denotes interior product with X. Since d maps basic forms to themselves, we may
compute the basic cohomology

Hk
b (M,F) :=

ker
(
d : Ωk

b (M)→ Ωk+1
b (M)

)
im
(
d : Ωk−1

b (M)→ Ωk
b (M)

)
for 0 ≤ k ≤ q. Because d commutes with pullbacks, these vector spaces are smooth invariants of
the foliation, meaning that foliated diffeomorphisms (diffeomorphisms that map leaves onto leaves)
preserve the basic cohomology groups. In [8], it was shown for complete Riemannian foliations
that the basic cohomology algebra is a topological invariant. In general, it is not true that the
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basic cohomology is topologically invariant, because there exist smooth foliations that are foliated
homeomorphic (but not foliated diffeomorphic) with nonisomorphic basic cohomology groups (see
the introduction of [8] for an example). However, in [2, Théorème 1, Corollaire 1], the authors show
for arbitrary smooth foliations that smooth foliated homotopy equivalences induce isomorphisms
on basic cohomology.

In general, Hk
b (M,F) need not be finite dimensional, unless there are topological restrictions

(such as the existence of a bundle-like metric), and even when such restrictions apply, Poincaré
duality is not satisfied except in special cases, such as when the foliation is taut and Riemannian.
Much work on these cohomology groups has been done (c.f. [1], [11], [20], [2], [5], [6], and the
associated references).

Suppose next that M is endowed with a Riemannian metric g. For simplicity, we will assume that
M is oriented and F is transversally oriented in what follows, to make the Hodge star operators
well-defined. However, many of the results carry over to the general case with minor changes and
simple adjustments to the proofs.

A metric on the bundle of differential forms is induced from g, and in fact for any α, β ∈ Ωr (M),

〈α, β〉 =

∫
M
α ∧ ∗β,

where ∗ is the Hodge star operator. The formal adjoint δ of d with respect to this metric satisfies

δ = (−1)nr+n+1 ∗ d∗ = (−1)r ∗−1 d∗
on Ωr (M). We let the smooth part of the L2-orthogonal complement of Ωr

b (M) be

Ωr
a (M, g) := Ωr

b (M)⊥ = {α ∈ Ωr (M) : 〈α, β〉 = 0 for all β ∈ Ωr
b (M)}

the space of antibasic r-forms. Observe that for all β ∈ Ωr−1
b (M), α ∈ Ωr

a (M, g),

0 = 〈dβ, α〉 = 〈β, δα〉 ,
so that δ preserves the antibasic forms, and again δ2 = 0. We now define the antibasic cohomol-
ogy groups Hr

a (M,F , g) for 0 ≤ r ≤ n by

Hr
a (M,F , g) :=

ker
(
δ : Ωr

a (M, g)→ Ωr−1
a (M, g)

)
im
(
δ : Ωr+1

a (M, g)→ Ωr
a (M, g)

) .
Theorem 2.1. Let F be a smooth foliation on a smooth, closed, oriented manifold M that is
endowed with a metric g. The isomorphism classes of the groups Hr

a (M,F , g) do not depend on
the choice of g and are thus invariants of (M,F).

Proof. Consider a general change of metric from g to g′. Let ∗ denote the Hodge star operator for
metric g, and let ∗′ denote the Hodge star operator for g′. Similarly we define δ and δ′. We define
the invertible bundle maps Ar and Br on Ωr (M) by

Ar : = ∗−1∗′ : Ωr (M)→ Ωr (M) ,

Br : = ∗′∗−1 : Ωr (M)→ Ωr (M) .

Then observe that

ArBr = ∗−1 ∗′ ∗′∗−1 = identity,

and also BrAr is the identity. Thus we also have that

Ar = ∗−1∗′ = ∗
(
∗′
)−1

,

Br = ∗′∗−1 =
(
∗′
)−1 ∗ .

With these definitions,

∗′ = ∗Ar = Bn−r ∗ .
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Then on Ωr (M), the formal adjoint of d in the g′ metric is

δ′ = ± ∗An−r+1d ∗Ar

= Br−1δAr.

Then we check

0 =
(
δ′
)2

= Br−2δAr−1Br−1δAr

= Br−2δ2Ar.

Consider the map on differential r-forms given by ψ 7→ ψ′ = (Ar)−1 ψ = Brψ, which is an isomor-
phism. Then we see that

δ′ψ′ = Br−1δAr (Ar)−1 ψ

= Br−1 (δψ) = (δψ)′ .

Restricting now to the foliation case and the antibasic forms, we must determine if Br maps the
g-antibasic r-forms to the g′-antibasic r forms. We check this by taking any g-antibasic r-form ψ
and any basic form β:

0 = 〈β, ψ〉 =

∫
M
β ∧ ∗ψ

=

∫
M
β ∧ ∗′

(
∗′
)−1 ∗ ψ =

∫
M
β ∧ ∗′Brψ = 〈β,Brψ〉′ .

Hence Br maps the g-basic forms to the g′-antibasic forms. By the above, δ′ (Brψ) = (δψ)′

for antibasic r-forms ψ, so that Br (ker δ) = ker δ′ and Br (im δ) = im δ′, so that the antibasic
cohomology groups corresponding to g and g′ are isomorphic through the map [ψ] 7→ [Brψ]′. �

Corollary 2.2. Suppose that (M,F) is a smooth foliation of a smooth, closed, oriented manifold
M . Suppose that F : M → M ′ is a diffeomorphism, and let F ′ be the foliation induced on M ′.
Then for any two metrics g, g′ on M and M ′, respectively, Hr

a (M,F , g) ∼= Hr
a (M ′,F ′, g′). Thus,

the isomorphism class of Hr
a (M,F , g) is a smooth foliation invariant.

Proof. Given the setting as above, observe that F ∗g′ is another metric on M . By construction and
the theorem above, Hr

a (M ′,F ′, g′) ∼= Hr
a (M,F , F ∗g′) ∼= Hr

a (M,F , g). �

Notation 2.3. Henceforth we will denote Ωr
a (M) = Ωr

a (M, g) and Hr
a (M,F) ∼= Hr

a (M,F , g),
with the particular background metric g understood.

Lemma 2.4. Let (M,F) be a smooth foliation of codimension q on a closed, oriented manifold M
with any Riemannian metric. Then Hk

a (M,F) = Hk (M) for k > q, and Hq
a (M,F) is isomorphic

to a subspace of Hq (M).

Proof. Since Ωk
a (M) = Ωk (M) for k > q, Hk

a (M,F) = Hk (M) for k > q. We also have

Hq
a (M,F) =

ker
(
δ|Ωqa(M)

)
im
(
δ|

Ωq+1
a (M)

) =
ker
(
δ|Ωqa(M)

)
im
(
δ|Ωq+1(M)

) ⊆ ker
(
δ|Ωq(M)

)
im
(
δ|Ωq+1(M)

) = Hq (M) .

�

In the case of codimension 1 foliations, we can say more.

Proposition 2.5. Let M be a closed, connected, oriented Riemannian manifold with codimen-
sion 1 foliation F . Assume that the mean curvature form of the normal bundle is everywhere
nonzero. Then the only basic functions on M are constants, H0

a (M) = {0}, H0
b (M,F) = R, and

Hj
a (M,F) = Hj (M), Hj

b (M,F) = {0} for j ≥ 1.



6 G. HABIB AND K. RICHARDSON

Proof. Since the normal bundle (TF)⊥ has rank 1, it is involutive. Let ν be the transverse volume
form of F . Note that TF = ker ν. By Rummler’s formula [18],

dν = −κN ∧ ν,

where κN is the mean curvature 1-form of (TF)⊥. By assumption, κN is nonzero everywhere.
Observe that any one-form may be written β = aν + γ, where a is a function and γ is orthogonal
to ν. Note that a one-form β is basic if and only if Xyβ = 0 and Xydβ = 0 for all X ∈ ker ν. The
first condition implies β = aν, and the second condition implies

0 = Xy (da ∧ ν + adν) = Xy (da ∧ ν − aκN ∧ ν)

= Xy[(da− aκN ) ∧ ν],

which implies

Xy (da− aκN ) = 0

for all X ∈ Γ (TF), or

da = aκN + bν

for some function b. Since κN 6= 0 and is orthogonal to ν, the maximum and minimum of the
function a on M must occur when a = 0, so a ≡ 0. Thus, there are no nonzero basic one-forms, so
that Ω1

a (M) = Ω1 (M). Every function f on M can be written as f = c + δα for some one-form
α and constant c by the Hodge theorem. Since α and δα are necessarily antibasic, we have the
natural decomposition of f into its basic component c and antibasic component δα. Therefore, every
antibasic function is δ-exact, and every basic function is constant, so we have H0

a (M,F) = {0} ,
H0
b (M,F) = R, and Hj

a (M,F) = Hj (M), Hj
b (M,F) = {0} for j ≥ 1, because Ωj

a (M) = Ωj (M)
for j ≥ 1. �

Remark 2.6. In the next section, we consider the case of Riemannian foliations. Codimension
one Riemannian foliations always have κN = 0, so the proof of the previous proposition does not
apply. Indeed, it is not true that there are no basic one-forms, since the transverse volume form ν
is always a basic one-form. Also, it is quite possible that there are nonconstant basic functions. The
cohomological facts in this case are only different in degree 1: H0

a (M,F) = {0}, H0
b (M,F) = R,

H1
b (M,F) = R, H1 (M) ∼= H1

a (M,F) ⊕H1
b (M,F), and Hj

a (M,F) = Hj (M), Hj
b (M,F) = {0}

for j ≥ 2.

Given two smooth foliations (M,F) and (M ′,F ′), a map f : (M,F)→ (M ′,F ′) is called foliated
if f maps the leaves of F to the leaves of F ′, which implies f∗(TF) ⊂ TF ′. It follows that the
basic forms on (M ′,F ′) pull back to basic forms on (M,F). Two foliated maps f, g : (M,F) →
(M ′,F ′) are foliated homotopic if there exists a continuous map H : [0, 1]×M →M ′ such that
H(0, x) = f(x) and H(1, x) = g(x) and for all t ∈ [0, 1] the map H(t, ·) is foliated and smooth as
a map from (M,F) to (M ′,F ′). A foliated map f : (M,F) → (M ′,F ′) is a foliated homotopy
equivalence if there exists a foliated map h : (M ′,F ′) → (M,F) such that f ◦ h and h ◦ f are
foliated homotopic to the identity on the two foliations.

It is proved in [2] (also in [8] for the case of foliated homeomorphisms) that foliated homotopic
maps induce the same map on basic cohomology and that basic cohomology is a foliated homotopy
invariant. We now examine whether or not antibasic cohomology satisfies the same property.

Note that since in general the codifferential δ does not commute with pullback f∗ by a smooth
map f : (M,F) → (M ′,F ′), we do not expect that pullback induces a linear map on antibasic
cohomology. However, since it is true that on differential forms d ◦ f∗ = f∗ ◦ d, we also have that

(f∗)† ◦ δ = δ ◦ (f∗)† ,

where † denotes the formal L2-adjoint. Note that f∗ is not necessarily bounded on L2. If we restrict
to the case of closed manifolds, f∗ does map smooth forms to smooth forms in L2, so it is a densely
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defined operator on L2. Here (f∗)† is the formal adjoint defined on its domain. From unbounded

operator theory, the domain of (f∗)† is

Dom
(

(f∗)†
)

= {α ∈ L2 (Ω (M)) : ∃γ ∈ L2
(
Ω
(
M ′
))

such that 〈f∗β, α〉M = 〈β, γ〉M ′ ∀β ∈ Ω
(
M ′
)
}.

But it is known that if α is smooth, and if the linear map Φf (β) := 〈f∗β, α〉M is bounded, then
Φf (β) = 〈β, γ〉M ′ for some γ by the Riesz representation theorem. However, it turns out that Φf (·)
is unbounded for almost all choices of f (the rank of its differential must be constant, for instance).

In the cases where Φf is bounded, (f∗)† induces a linear map on antibasic cohomology. The usual

proof applies in this case to show that maps (f∗)† are invariant over the homotopy class of such f .
Another possible approach is to use the Hodge star operator ∗ and ∗′ on M and M ′, respectively,

and to consider ∗f∗∗′ as a map that commutes with δ up to a sign. However, this would not apply
in our case since ∗f∗∗′ does not necessarily preserve the antibasic forms.

Thus, we still have the following open problem:

Problem 1. If the foliations (M,F) and (M ′,F ′) with Riemannian metrics are foliated homotopy
equivalent, does that mean that their antibasic cohomology groups are isomorphic?

Remark 2.7. This problem is solved in the case of Riemannian foliations, as we see in Theorem
6.8 and Corollary 6.9. In this case, Pa preserves the smooth forms, so we show that the operator
Paf

∗P ′a induces a linear map on antibasic cohomology, which is an isomorphism when f is a foliated
homotopy equivalence.

3. Riemannian foliation setting

In the Riemannian foliation setting, we often restrict to basic forms. Let (M,F) be a foliation
of codimension q and dimension p, endowed with a bundle-like metric. Again, for simplicity of
exposition, we assume the foliation and manifold are oriented.

From [12], the orthogonal projection Pb : L2 (Ω (M)) → L2 (Ωb (M)) maps smooth forms to
smooth basic forms; this was also stated and used in [1]. Because of this, it is also true that

Pa = (I − Pb) : L2 (Ω (M))→ L2
(

Ωb (M)⊥
)

maps smooth forms to smooth “antibasic forms”. As described in [12], we have

db = PbdPb = dPb,

(i.e. d restricts to the basic forms). Letting δ = δk : Ωk (M)→ Ωk−1 (M) be the L2 adjoint of dk−1,
we then have

δb = PbδPb = Pbδ,

and note that the basic adjoint is δb = Pbδ = PbδPb. Note also that the formulas above imply that

(I − Pb) d (I − Pb) = (I − Pb) d,
(I − Pb) δ (I − Pb) = δ (I − Pb) ,

or

da = PadPa = Pad,

δa = PaδPa = δPa. (3.1)

We see

δ2
a = PaδPaPaδPa = δ2Pa = 0.

The adjoint of δa restricted to antibasic forms is da = PadPa = Pad, and again

d2
a = PadPaPadPa = Pad

2 = 0.
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Also in [12], it is shown that

Pbδ − δPb = ε ◦ Pb = [− (Paκ)y+ (−1)p (ϕ0y) (χF∧)] ◦ Pb, (3.2)

dPb − Pbd = Pb ◦ ε∗ = Pb ◦ [− (Paκ) ∧+ (−1)p (χFy) (ϕ0∧)]

on Ω∗ (M). Recall here that χF is the characteristic volume form of TF and ϕ0 is a (p + 1)-form
with the property that v1y · · ·yvpyϕ0 = 0 for any set {vj} of p vectors in TF . Note that ϕ0 vanishes

precisely when (TF)⊥ is completely integrable. We observe that the only information about the
foliation needed to obtain the formulas above in [12] is the fact that the orthogonal projection
Pb maps smooth forms to smooth forms, that Pb commutes with ∗, the transversal Hodge star-
operator, and that Pb (α ∧ Pbβ) = (Pbα) ∧ (Pbβ) for all smooth forms α, β. These facts are true
for Riemannian foliations. From the formulas above and the notation κa = Paκ, we obtain the
following.

Proposition 3.1. On an oriented Riemannian foliation (M,F) on a closed, oriented manifold
with bundle-like metric,

δPa − Paδ = ε ◦ Pb = [−κay+ (−1)p (ϕ0y) (χF∧)] ◦ Pb, (3.3)

Pad− dPa = Pb ◦ ε∗ = Pb ◦ [−κa ∧+ (−1)p (χFy) (ϕ0∧)] (3.4)

on Ω∗ (M). The operation ε maps Ωb(M) to Ωb (M,F)⊥, and it follows that

PbεPb = Pbε
∗Pb = 0,

εPb = PaεPb, ε
∗Pb = Paε

∗Pb,

PbεPa = Pbε, Pbε
∗Pa = Pbε

∗. (3.5)

4. The antibasic Laplacian

Again we assume that (M,F) is a foliation of codimension q and dimension p, endowed with a
bundle-like metric, with orientations on both the foliation and the manifold. Recall that the basic
Laplacian is ∆b = δbdb + dbδb = restriction of Pbδd + dPbδ to Ωb (M). We wish to do a similar
restriction to antibasic forms. Let the subscript a denote the restriction to Ωa(M), the antibasic
forms. Then

∆a = δada + daδa = (da + δa)
2

= restriction of δPad+ Padδ to Ωa(M).

From the formulas (3.4) and (3.5),

∆a = (δPad+ Padδ)|Ωa(M)

= (δdPa + δPbε
∗Pa + dPaδ + Pbε

∗Paδ)|Ωa(M)

= (δd+ δPbε
∗ + dδ + Pbε

∗δ)|Ωa(M)

= (∆ + δPbε
∗ + Pbε

∗δ)|Ωa(M) .

Thus ∆a is the restriction of an elliptic operator on the space of all differential forms. Note that
it is not clear whether this operator is differential or pseudodifferential or not, since Pb is not
pseudodifferential in general, because it is not pseudolocal. Simple examples show that Pb can take
a smooth function to a discontinuous function.

We summarize the results below.

Theorem 4.1. The antibasic Laplacian ∆a satisfies the following.

∆aPa = ∆̃Pa = Pa∆̃
∗ = Pa∆Pa,

where ∆̃ = ∆ + δPbε
∗ + Pbε

∗δ, ∆̃∗ = ∆ + εPbd+ dεPb is its adjoint, and ∆ = ∆− εPbε∗.
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Proof. The first equality was shown above. To prove that ∆̃Pa = Pa∆Pa, we compute

∆̃Pa = Pa∆̃Pa = Pa (∆ + δPbε
∗ + Pbε

∗δ)Pa

= Pa∆Pa + PaδPbε
∗Pa

= Pa∆Pa + Pa (Paδ)Pbε
∗Pa

= Pa∆Pa + Pa (δPa − εPb)Pbε∗Pa
= Pa∆Pa − PaεPbε∗Pa
= Pa (∆− εPbε∗)Pa.

Here we have used the fact that PaPb = 0, P 2
a = Pa, P

2
b = Pb, and formula (3.3). Note that since

Pa∆Pa is formally self-adjoint, ∆̃Pa =
(

∆̃Pa

)∗
= Pa∆̃

∗. �

Corollary 4.2. The antibasic Laplacian is the restriction of the ordinary Laplacian if the mean
curvature is basic and the normal bundle of the foliation is involutive.

Proof. If the mean curvature is basic and the normal bundle of the foliation is involutive, then

Paκ = 0 and ϕ0 = 0, so that ε = 0. Then ∆̃ = ∆̃∗ = ∆ in this case, so by the theorem above
∆aPa = ∆Pa.

�

Also we show a few more facts about the projections and the operators d, δ, ε.

Proposition 4.3. With notation as above,

Pa (d+ ε∗)Pa = (d+ ε∗)Pa.

Proof. By (3.4), we have

Pa (d+ ε∗)Pa = PadPa + Paε
∗Pa

= (dPa + Pbε
∗)Pa + Paε

∗Pa

= dPa + (Pb + Pa) ε
∗Pa

= (d+ ε∗)Pa.

�

Now, we let the first order operator Dε be defined as

Dε = δ + d+ ε∗,

and the antibasic operator Dε
a by

Dε
a = Pa (δ + d+ ε∗)Pa.

Corollary 4.4. We have
Dε
a = PaD

εPa = DεPa,

so that Dε
a is the restriction of the elliptic operator Dε.

Corollary 4.5. Let ∆ε := ∆ + ε∗δ + δε∗. Then Pa∆
εPa = ∆εPa, so that the operator Pa∆

εPa on
antibasic forms is the restriction of an elliptic operator.

Proof. By Proposition 4.3 and (3.1), we compute

Pa∆
εPa = Pa (∆ + ε∗δ + δε∗)Pa = Pa (δ (d+ ε∗) + (d+ ε∗) δ)Pa

= PaδPa (d+ ε∗)Pa + (d+ ε∗)PaδPa

= δPa (d+ ε∗)Pa + (d+ ε∗) δPa

= δ (d+ ε∗)Pa + (d+ ε∗) δPa = ∆εPa.

�
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5. Functional analysis of the antibasic de Rham and Laplace operators

In this section, we show that the antibasic de Rham and Laplace operators on a Riemannian
foliation have properties similar to the ordinary de Rham and Laplace operators on closed man-
ifolds, namely that they have discrete spectrum consisting of eigenvalues corresponding to finite-
dimensional eigenspaces. Note that we must work out the standard Sobolev and elliptic theory
for these operators, because in fact they are not pseudodifferential and are not even restrictions of
pseudodifferential operators to antibasic forms.

Throughout this section, we assume that (M,F) is a foliation with bundle-like metric g, and as
in the previous section, we denote the antibasic Hodge-de Rham and Laplace operators as

Da = PadPa + PaδPa = da + δa,

∆a = daδa + δada = D2
a.

First, let Hk
a denote the Sobolev space Hk (Ωa (M)), defined as the completion of Ωa (M) with

respect to a choice of the kth Sobolev norm ‖•‖k; this is the same as the closure of Ωa(M) inside the

(complete) Sobolev space Hk(Ω(M)). We notate the ordinary L2 norm as the 0 th Sobolev norm
‖•‖0, so that H0

a = L2
(
Ωk
a (M)

)
. Note that Rellich’s Theorem still holds on this subspace, i.e. the

inclusion of Hk
a ↪→ H`

a is compact for k > `. The proof follows easily from the standard case.
Also, note that the Sobolev embedding theorem holds for the antibasic forms, so that for any inte-

ger m > dimM
2 , the space Hk+m

a ⊆ Ck (M). This follows from the fact that Hk+m
a ⊆ Hk+m (Ω (M)).

Lemma 5.1. There exists a constant c > 0 such that ‖Daψ‖0 ≤ c ‖ψ‖1 for all ψ ∈ Ωa (M).

Proof. By (3.4), for any ψ ∈ Ωa (M),

Daψ = (da + δa)ψ = (Pad+ δ)ψ = (dPa + Pbε
∗ + δ)ψ

= (d+ δ)ψ + Pbε
∗ψ.

Then, since d+ δ is a first order differential operator and ε∗ is a bounded operator,

‖Daψ‖0 ≤ ‖(d+ δ)ψ‖0 + ‖Pbε∗ψ‖0
≤ c1 ‖ψ‖1 + ‖ε∗ψ‖0 ≤ c1 ‖ψ‖1 + c2 ‖ψ‖0

for some positive constants c1 and c2, so that there exists c > 0 independent of ψ such that
‖Daψ‖0 ≤ c ‖ψ‖1. �

Lemma 5.2. (G̊arding’s Inequality) There exists a positive constant c such that
‖ψ‖1 ≤ c (‖ψ‖0 + ‖Daψ‖0) for all ψ ∈ Ωa (M).

Proof. By the ordinary G̊arding’s Inequality, since d+δ is an elliptic, first order operator on Ω (M),
there exists a constant c1 such that for all ψ ∈ Ωa (M) ⊆ Ω (M),

‖ψ‖1 ≤ c1 (‖ψ‖0 + ‖(d+ δ)ψ‖0) .

Then, again by (3.4) and the proof of Lemma 5.1,

‖ψ‖1 ≤ c1 (‖ψ‖0 + ‖(da + δa − Pbε∗)ψ‖0)

≤ c1 (‖ψ‖0 + ‖Pbε∗ψ‖0 + ‖(da + δa)ψ‖0)

≤ c1 (‖ψ‖0 + ‖ε∗ψ‖0 + ‖(da + δa)ψ‖0) ,

so since ε∗ is bounded, the result follows. �

Lemma 5.3. For all nonnegative integers k, there exists a positive constant ck such that

‖Paφ‖k ≤ ck ‖φ‖k and ‖Pbφ‖k ≤ ck ‖φ‖k
for any differential form φ.
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Proof. We use induction on k. Let φ be any differential form. Observe first that ‖Paφ‖0 ≤
‖φ‖0 , ‖Pbφ‖0 ≤ ‖φ‖0. Next, suppose that the results have been shown for some nonnegative
integer k. Since Dε is elliptic on all forms, it satisfies the ordinary elliptic estimates: there exist
constants b1 and b2 such that

‖Paφ‖k+1 ≤ b1 ‖DεPaφ‖k + b2 ‖Paφ‖k
= b1 ‖(d+ δ + ε∗)Paφ‖k + b2 ‖Paφ‖k
= b1 ‖(Pad− Pbε∗ + Paδ + εPb + ε∗Pa)φ‖k + b2 ‖Paφ‖k
= b1 ‖(Pad− Pbε∗Pa + Paδ + εPb + ε∗Pa)φ‖k + b2 ‖Paφ‖k
= b1 ‖(Pad+ Paδ + εPb + Paε

∗Pa)φ‖k + b2 ‖Paφ‖k
≤ b1 (‖Pa (d+ δ)φ‖k + ‖εPbφ‖k + ‖Paε∗Paφ‖k) + b2 ‖Paφ‖k .

Using the fact that ε is a zeroth order differential operator and the induction hypothesis,

‖Paφ‖k+1 ≤ (constant) ‖(d+ δ)φ‖k + (constant) ‖φ‖k
≤ (constant) ‖φ‖k+1 + (constant) ‖φ‖k ≤ (constant) ‖φ‖k+1 ,

since d+ δ is a first order operator. Also,

‖Pbφ‖k+1 = ‖φ− Paφ‖k+1 ≤ ‖φ‖k+1 + ‖Paφ‖k+1 ≤ (constant) ‖φ‖k+1 .

By induction, the proof is complete. �

Lemma 5.4. Let Dε = d+ δ+ ε∗ as an operator on all differential forms, and let Da = da + δa be
the antibasic de Rham operator. For all nonnegative integers k, there exists a positive constant ck
such that

‖Dεψ‖k − ck ‖ψ‖k ≤ ‖Daψ‖k ≤ ‖D
εψ‖k + ck ‖ψ‖k ,

for any antibasic form ψ.

Proof. For any antibasic ψ,

‖Daψ‖k = ‖Dεψ + (Da −Dε)ψ‖k = ‖Dεψ + Paε
∗ψ‖k .

It suffices to bound ‖Paε∗ψ‖k. This follows from a bound on ‖Paφ‖k from Lemma 5.3, since ε∗ is
a zeroth order operator. �

Lemma 5.5. (Elliptic Estimates for Da) For every integer k ≥ 0, there exists a positive constant
Ck such that ‖ψ‖k+1 ≤ Ck (‖ψ‖k + ‖Daψ‖k) for all ψ ∈ Ωa (M).

Proof. Let k be a nonnegative integer. From the elliptic estimates for the operator Dε on all forms,
there exists a positive constant bk such that for any ψ ∈ Ωa (M),

‖ψ‖k+1 ≤ bk (‖ψ‖k + ‖Dεψ‖k)
≤ bk (‖ψ‖k + ‖Daψ‖k + ck ‖ψ‖k)

for a positive constant ck, by Lemma 5.4. The inequality follows by letting Ck = max (bk, bk (1 + ck)).
�

Remark 5.6. The case k = 0 is G̊arding’s Inequality, which we have shown independently in
Lemma 5.2.

Lemma 5.7. The operator Da on Ωa (M) is formally self-adjoint.
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Proof. For any antibasic forms α and β,

〈Daα, β〉 = 〈(Pa (d+ δ)Pa)α, β〉
= 〈α, Pa (d+ δ)Paβ〉 = 〈α,Daβ〉 .

�

Lemma 5.8. The domain of the closure of Da is H1
a .

Proof. The graph of Da is Ga = {(ω,Daω) : ω ∈ Ωa (M)} ⊆ H0
a × H0

a . The closure of Ga is also
a graph, by the following argument. We must show that for any (0, η) ∈ Ga, η = 0. For any
(0, η) ∈ Ga, there is a sequence (ωj) of smooth antibasic forms with ωj → 0 and Daωj → η in
H0
a ⊆ L2. But then for any smooth antibasic form γ,

〈Daωj , γ〉 → 〈η, γ〉 , and 〈ωj , Daγ〉 → 0

as j → ∞. But 〈ωj , Daγ〉 = 〈Daωj , γ〉 by Lemma 5.7, so 〈η, γ〉 = 0 for all smooth γ, so η = 0.

Thus Ga = {(ω,Aω) : ω ∈ dom (A)} for some operator A, which is defined to be the closure of Da.
Thus the domain is the set of all ω ∈ H0

a such that there exists a sequence (ωj) of smooth antibasic
forms such that ωj → ω in H0

a and (Daωj) converges in H0
a . By G̊arding’s Inequality (Lemma 5.2)

and Lemma 5.1, dom (A) = H1
a . �

Lemma 5.9. (Existence of Friedrichs’ mollifiers) There exists a family of self-adjoint smoothing
operators {Fρ}ρ∈(0,1) on H0

a such that (Fρ) is bounded in H0
a , Fρ → 1 uniformly weakly in H0

a as

ρ→ 0, and [Fρ, Da] extends to a uniformly bounded family of operators on H0
a .

Proof. Let F 0
ρ be defined as the usual Friedrichs’ mollifiers; c.f. [16, Definition 5.21, Exercise 5.34].

Thus, these operators satisfy the properties above, except with H0
a replaced by L2 (Ω (M)) and Da

replaced by any first order differential operator. Now let Fρ = PaF
0
ρ . Note that Fρ is smoothing

because F 0
ρ is smoothing and since Pa maps smooth forms to smooth forms; its kernel is the kernel

of F 0
ρ followed by Pa. We now check the three properties. First, for any α ∈ H0

a ⊆ L2 (Ω (M)),

‖Fρα‖0 =
∥∥PaF 0

ρα
∥∥

0
≤
∥∥F 0

ρα
∥∥

0
≤ c ‖α‖0

for some c > 0, by the first property of F 0
ρ . Next, for any α ∈ H0

a , for all smooth antibasic forms β,

〈(Fρ − 1)α, β〉 =
〈(
PaF

0
ρ − 1

)
α, β

〉
=
〈(
F 0
ρ − 1

)
α, β

〉
,

which approaches 0 uniformly as ρ → 0 by the corresponding property of F 0
ρ . Lastly, for any

smooth antibasic forms ω, η,

〈[Fρ, Da]ω, η〉 =
〈
PaF

0
ρDaω, η

〉
−
〈
DaPaF

0
ρω, η

〉
=

〈
F 0
ρ (δ + d+ Pbε

∗)ω, η
〉
−
〈
Pa (δ + d+ εPb)F

0
ρω, η

〉
=

〈
F 0
ρ (δ + d)ω, η

〉
+
〈
F 0
ρPbε

∗ω, η
〉
−
〈
(δ + d+ εPb)F

0
ρω, η

〉
=

〈[
F 0
ρ , (δ + d)

]
ω, η

〉
+
〈
F 0
ρPbε

∗ω, η
〉
−
〈
εPbF

0
ρω, η

〉
.

The operator
[
F 0
ρ , (δ + d)

]
is bounded by the corresponding property of F 0

ρ , and F 0
ρPbε

∗ and εPbF
0
ρ

are both zeroth order operators that are uniformly bounded in ρ on L2, so we conclude that [Fρ, Da]
is uniformly bounded on H0

a . �

Corollary 5.10. Let {Fρ} be a family of Friedrichs’ mollifiers. Then Fρ and [Da, Fρ] are uniformly

bounded families of operators on Hk
a for any k ≥ 0.

Proof. We proceed by induction using the elliptic estimates in Lemma 5.5. �

Proposition 5.11. Suppose that α, β ∈ H0
a and Daα = β weakly. Then α ∈ H1

a = domDa, and
Daα = β.
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Proof. For any α, β ∈ H0
a , suppose Daα = β weakly. Then for any smooth antibasic form γ and

any ρ ∈ (0, 1),

〈DaFρα, γ〉 = 〈Fρα,Daγ〉
= 〈α, FρDaγ〉 = 〈α,DaFργ〉+ 〈α, [Fρ, Da]γ〉
= 〈β, Fργ〉+ 〈α, [Fρ, Da]γ〉
= 〈Fρβ, γ〉+ 〈α, [Fρ, Da]γ〉

by Lemma 5.9. Thus, for a constant C > 0 independent of ρ and γ,

|〈DaFρα, γ〉| ≤ C ‖γ‖0 .

Then ‖DaFρα‖0 ≤ C. By G̊arding’s Inequality (Lemma 5.2) and the fact that Fρ is a bounded

operator in H0
a , {Fρα}ρ∈(0,1) is a bounded set in H1

a . By the weak compactness of a ball in the

Hilbert space H1
a (with equivalent metric 〈ξ, θ〉1 = 〈Daξ,Daθ〉+ 〈ξ, θ〉), there is a sequence ρj → 0

and α′ ∈ H1
a such that Fρjα→ α′ weakly in H1

a . By Rellich’s Theorem, the subsequence converges

strongly in H0
a , so Fρjα→ α′ in H0

a . But we know already that Fρjα→ α in H0
a , so α = α′ ∈ H1

a .
�

Corollary 5.12. The antibasic de Rham and antibasic Laplacian are essentially self-adjoint oper-
ators.

Proof. From the proposition above, the domain of the closure of the symmetric operator Da is
the domain of its H0

a -adjoint, so that Da is self-adjoint. Then ∆a = D2
a is also essentially self-

adjoint. �

Proposition 5.13. (Elliptic regularity) Suppose that ω ∈ kerDa ⊆ H1
a . Then ω is smooth.

Proof. If Daω = 0 for some ω ∈ H1
a . We will show by induction that ω ∈ Hk

a for all k, and then the
Sobolev embedding theorem implies that ω is smooth. Suppose that we know ω ∈ Hk−1

a for some
k ≥ 2. Let {Fρ} be a family of Friedrich’s mollifiers. Then from the elliptic estimates (Lemma 5.5),
there is a constant Ck−1 > 0 such that

‖Fρω‖k ≤ Ck−1

(
‖Fρω‖k−1 + ‖DaFρω‖k−1

)
≤ Ck−1

(
‖Fρω‖k−1 + ‖FρDaω‖k−1 + ‖[Da, Fρ]ω‖k−1

)
= Ck−1

(
‖Fρω‖k−1 + ‖[Da, Fρ]ω‖k−1

)
.

Thus ‖Fρω‖k is bounded by Corollary 5.10. We now proceed as in the proof of Proposition 5.11 to

say that there is a sequence ρj → 0 such that Fρjω → ω′ weakly in Hk
a and strongly to H0

a . Thus,

we get ω = ω′ ∈ Hk
a . �

Corollary 5.14. Eigenforms of Da are smooth.

Proof. The proof above also is easily modified if Daω = λω to show that the eigenforms of Da are
smooth. �

We will now use a standard technique to derive the spectral theorem for Da and ∆a from these
basic facts (c.f. [16, Chapter 5])

Lemma 5.15. Let G = {(ω,Daω) : ω ∈ H1
a} ⊆ H1

a × H0
a denote the closure of the graph of Da.

Let J : H0
a ×H0

a → H0
a ×H0

a be defined by J (x, y) = (y,−x). Then there is an orthogonal direct
sum decomposition

H0
a ⊕H0

a = G⊕ JG.
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Proof. Suppose (x, y) ∈ G⊥. Then, for all ω ∈ Ωa (M),

0 = 〈(x, y) , (ω,Daω)〉 = 〈x, ω〉+ 〈y,Daω〉 ,
so that Day + x = 0 weakly. By Proposition 5.11, y ∈ H1

a , so (y,−x) ∈ G, so (x, y) ∈ JG. �

Definition 5.16. Let the operator Qa : H0
a → H1

a be defined by the following equation: for any
α ∈ H0

a , (Qaα,DaQaα) is the orthogonal projection of (α, 0) to G in H0
a ⊕H0

a .

As ‖α‖20 ≥ ‖Qaα‖
2
0 + ‖DaQaα‖20 ≥ c‖Qaα‖21, then Qa is bounded as an operator from H0

a to H1
a .

By Rellich’s Theorem, Qa is compact as an operator from H0
a to H0

a . It is self-adjoint, positive,
and injective, and has norm ≤ 1. By the spectral theorem for compact, self-adjoint operators, H0

a

can be decomposed as a direct sum of finite-dimensional eigenspaces of Qa, and the eigenvalues
approach 0 as the only accumulation point. Given an eigenvector α of Qa corresponding to the
eigenvalue µ > 0, so that 0 < µ ≤ 1, by Lemma 5.15 there exists η such that

(α, 0) = (Qaα,DaQaα) + (−Daη, η)

= µ (α,Daα) + (−Daη, η) ,

so that (µ− 1)α = Daη and η = −µDaα. Letting λ2 = 1−µ
µ and β = − 1

µλη, we have

Daα = λβ, Daβ = λα.

Thus α±β are eigenforms ofDa with eigenvalues±λ. Thus, H0
a can be decomposed as an orthogonal

direct sum of finite-dimensional eigenspaces of Da. We now have the following.

Theorem 5.17. (Spectral Theorem for the antibasic operators) The spectrum of the antibasic Lapla-
cian and antibasic de Rham operators consists of real eigenvalues of finite multiplicity, with accu-
mulation points at infinity. The smooth eigenforms of Da are also the eigenforms of ∆a and can
be chosen to form a complete orthonormal basis of H0

a .

Proof. Besides the above computations, observe that ∆a = D2
a. �

6. The antibasic Hodge decomposition and homotopy invariance

Let M be a closed manifold of dimension n endowed with a foliation of codimension q and a
bundle-like metric. The basic Hodge decomposition theorem (proved in [12]) gives

Ωk
b (M) = im (db,k−1)⊕Hkb ⊕ im (δb,k+1) ,

where db,k = d : Ωk
b (M) → Ωk+1

b (M) is the exterior derivative restricted to basic forms with

L2-adjoint δb,k+1 = Pbδ : Ωk+1
b (M) → Ωk

b (M), and where Hkb = ker (∆b,k) is the space of basic
harmonic k-forms. Also

ker (db,k) = im (db,k−1)⊕Hkb and ker (δb,k) = Hkb ⊕ im (δb,k+1) ,

so the basic cohomology groups satisfy Hk
b (M,F) ∼= Hkb . We now have the tools to prove the

antibasic version.
First, note that there is an alternative de Rham complex that uses δ as a differential. Writing

Ωj = Ωj (M), the complex

Ωn δn−→ Ωn−1 δn−1−→ ...
δ1−→ Ω0 −→ 0

satisfies δk−1δk = 0 for 0 ≤ k ≤ n, and the de Rham cohomology satisfies

Hk (M) =
ker
(
δk : Ωk → Ωk−1

)
im (δk+1 : Ωk−1 → Ωk)

.

Abbreviating Ωj
a = Ωj

a (M), the antibasic de Rham complex is a subcomplex

Ωn
a

δn−→ Ωn−1
a

δn−1−→ ...
δ1−→ Ω0

a −→ 0
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We adopt a standard proof of Hodge decomposition to our case (c.f. [16, Chapter 6]) and utilize
the analytic results proved in the previous section.

Theorem 6.1. (Antibasic Hodge Theorem) Suppose that (M,F) is a Riemannian foliation
with bundle-like metric. Then for 0 ≤ k ≤ n the antibasic cohomology groups satisfy

Hk
a (M,F) ∼= Hka.

Proof. From Theorem 5.17, Hka = ker
(

∆a|Ωka
)

is finite dimensional for all k. Consider the following

subcomplex of the antibasic de Rham complex, with 0 being the codifferential, and the inclusion
maps:

...
0−→ Hj+1

a
0−→ Hja

0−→ Hj−1
a

0−→ ...
↓ı ↓ı ↓ı

...
δj+2−→ Ωj+1

a
δj+1−→ Ωj

a
δj−→ Ωj−1

a
δj−1−→ ...

We will show that the inclusion ı is a chain equivalence. We define the map P : Ωj
a → Hja to be the

restriction of the orthogonal projection L2
(

Ωj
a

)
→ Hja to smooth antibasic forms. Then Pı = 1

and ıP = 1− f (Da), where

f (λ) =

{
1 if λ 6= 0
0 if λ = 0

and where we have used Theorem 5.17 and the functional calculus. Let

g (λ) =

{
1
λ2

if λ 6= 0
0 if λ = 0

.

Then g is bounded on σ (Da), so the Green’s operator Ga = g (Da) extends to a bounded operator
on H0

a . We see that D2
aGa = f (Da) = 1− ıP , and also

D2
aGa = (δda + daδ)Ga = δdaGa +Gadaδ.

Since ∆a commutes with da, we have Ha = daGa = Gada. Thus, Ha satisfies

1− ıP = δHa +Haδ

and is thus a chain homotopy between ıP and 1, so ı is a chain equivalence.
�

Corollary 6.2. On a Riemannian foliation on a closed manifold, the antibasic cohomology groups
are finite dimensional.

Remark 6.3. After reading an early version of this paper, J.A. Álvarez-López observed that when
F is Riemannian, the Hodge star operator maps the antibasic complex isomorphically to the p-basic
complex investigated in [19], where the author showed that every k-basic cohomology group is finite
dimensional; the corollary also follows from that observation. If p = 1, M is oriented, and F is
Riemannian, then H•a(M,F) is in fact isomorphic to the term E1,•

2 of the spectral sequence of F ;
see [19, Lemma 2.5]. This agrees with computations made for the case p = 1.

Remark 6.4. For general foliations, the antibasic cohomology groups can be infinite-dimensional.
See Example 9.3.

The following corollary follows in the standard way.

Corollary 6.5. We have the following L2-orthogonal decomposition:

Ωk
a = Hka ⊕ im

(
δ|Ωk+1

a

)
⊕ im

(
da|Ωk−1

a

)
.
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Proof. We utilize the spectral theorem again, noting the eigenform decomposition ∆a ≥ 0. For any
smooth antibasic k-form α, ∆aα = (da + δa)

2 α = 0 if and only if

0 = 〈(da + δa)α, (da + δa)α〉
= 〈daα, daα〉+ 〈δα, δα〉 ,

if and only if daα = 0 and δα = 0. Because da and δa commute with ∆a, the spaces of forms Ωk,+
a

with positive ∆a eigenvalues are mapped isomorphically by da + δ. Thus

Ωk,+
a
∼= da

(
Ωk,+
a

)
⊕ δ

(
Ωk,+
a

)
⊆ Ωk+1,+

a ⊕ Ωk−1,+
a .

Then

Ω∗a = H∗a + im
(
δ|Ω∗a

)
+ im

(
da|Ω∗a

)
.

Also im
(
δ|Ωk+1

a

)
and im

(
d|Ωk−1

a

)
are orthogonal:

〈daα, δβ〉 =
〈
d2
aα, β

〉
= 0

for all α, β and likewise if γ ∈ Hka, then for all antibasic forms η, θ we have

〈daη, γ〉 = 〈η, δγ〉 = 0,

〈δθ, γ〉 = 〈θ, daγ〉 = 0.

Therefore, the result follows. �

Remark 6.6. For the same reason that δ can be used in place of d in computing de Rham co-
homology, the same reasoning shows from the Hodge theorem (in the Riemannian foliation case)
that

Hk
a (M,F) ∼=

ker
(
da : Ωk

a → Ωk+1
a

)
im
(
da : Ωk−1

a → Ωk
a

) .
We now use the above formula for antibasic cohomology to prove the foliated homotopy invariance

of antibasic cohomology in the case of Riemannian foliations.

Lemma 6.7. Let (M,F) and (M ′,F ′) be Riemannian foliations of closed manifolds with bundle-
like metrics, and let f be a foliated map from (M,F) → (M ′,F ′). Then Paf

∗P ′a induces a linear
map on antibasic cohomology.

Proof. We consider antibasic cohomology through the isomorphism Hk
a (M,F) ∼= ker(da:Ωka→Ωk+1

a )
im(da:Ωk−1

a →Ωka)
.

Then we have the following equation on antibasic forms, using (3.4) and the fact that pullbacks by
foliated maps preserve the basic forms:

Paf
∗P ′ad

′
a = Paf

∗P ′ad

= Paf
∗ (dP ′a + P ′bε

∗′)
= Paf

∗dP ′a + Paf
∗P ′bε

∗′

= Padf
∗P ′a + PaPbf

∗P ′bε
∗′

= PadPaf
∗P ′a = daPaf

∗P ′a.

Therefore, Paf
∗P ′a induces a linear map from d′a-cohomology to da-cohomology. �

Theorem 6.8. (Foliated Homotopy Axiom of Antibasic Cohomology) Let (M,F) and (M ′,F ′) be
Riemannian foliations of closed manifolds with bundle-like metrics, and let f1 and f2 be two foliated
maps from (M,F) → (M ′,F ′). If f1 is foliated homotopic to f2, then Paf

∗
1P
′
a and Paf

∗
2P
′
a induce

the same map on antibasic cohomology.
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Proof. Again we view antibasic cohomology through the isomorphism Hk
a (M,F) ∼= ker(da:Ωka→Ωk+1

a )
im(da:Ωk−1

a →Ωka)
.

Let H : [0, 1]×M → M ′ be a foliated homotopy such that H (0, x) = f1 (x) and H (1, x) = f2(x).
Then, define js : M → [0, 1]×M by js (x) = (s, x), and let h : Ωk (M ′)→ Ωk−1 (M) by

h (σ) =

∫ 1

0
j∗s (∂tyH

∗σ) ds.

Note that h preserves the basic forms since H is a foliated homotopy. By a standard calculation,
we have that

f∗2 − f∗1 = dh+ hd

on Ω (M ′). Then we apply Pa on the left and P ′a on the right and use the equation PadPa = Pad
to get

Paf
∗
2P
′
a − Paf∗1P ′a = PadhP

′
a + PahdP

′
a

= PadPaPahP
′
a + Pah

(
P ′ad− P ′bε∗′

)
= PadPaPahP

′
a + PahP

′
aP
′
ad− PahP ′bε∗′

= da
(
PahP

′
a

)
+
(
PahP

′
a

)
d′a − PaPbhP ′bε∗′

= da
(
PahP

′
a

)
+
(
PahP

′
a

)
d′a.

Thus PahP
′
a is a chain homotopy between Paf

∗
2P
′
a and Paf

∗
1P
′
a. �

Corollary 6.9. (Foliated Homotopy Invariance of Antibasic Cohomology) If (M,F) and (M ′,F ′)
are Riemannian foliations of closed manifolds with bundle-like metrics that foliated homotopy equiv-
alent, then their antibasic cohomology groups are isomorphic.

Proof. Suppose that f1 : M →M ′ is a foliated map such that there exists a foliated map f2 : M ′ →
M such that f1 ◦ f2 and f2 ◦ f1 are each foliated homotopic to the identity. Then we have that

P ′a (f1 ◦ f2)∗ P ′a = Id′ : Hk
a

(
M ′
)
→ Hk

a

(
M ′
)
,

Pa (f2 ◦ f1)∗ Pa = Id : Hk
a (M)→ Hk

a (M) .

Since the pullback by f2 preserves the basic forms,

Id′ = P ′af
∗
2 f
∗
1P
′
a = P ′af

∗
2 (Pa + Pb) f

∗
1P
′
a

= P ′af
∗
2PaPaf

∗
1P
′
a + P ′af

∗
2Pbf

∗
1P
′
a

= P ′af
∗
2PaPaf

∗
1P
′
a + P ′aP

′
bf
∗
2Pbf

∗
1P
′
a =

(
P ′af

∗
2Pa

) (
Paf

∗
1P
′
a

)
,

and similarly (Paf
∗
1P
′
a) (P ′af

∗
2Pa) = Id, so we must have that Paf

∗
1P
′
a is an isomorphism from

Hk
a (M ′) to Hk

a (M). �

7. Properties and applications

First we consider the simple case when the operators ε and ε∗ are zero. In this case, the antibasic
Betti numbers can be computed from the ordinary Betti numbers and basic Betti numbers.

Proposition 7.1. Suppose that (M,F) is a Riemannian foliation of a closed manifold of dimension
n, such that the normal bundle (TF)⊥ is involutive. Then for any bundle-like metric, the antibasic
cohomology and basic cohomology add to the ordinary cohomology. That is, for 0 ≤ k ≤ n

Hk (M) ∼= Hk
b (M,F)⊕Hk

a (M,F) .

Proof. First, we choose a bundle-like metric so that the mean curvature is basic; this can always
be done [7]. The operator ε∗ satisfies

ε∗ = −κa ∧+ (−1)k (χFy) (ϕ0∧)

= 0
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under the hypotheses, since ϕ0 = 0 if and only if the normal bundle is involutive. Then, by Theorem
4.1, the antibasic Laplacian is precisely a restriction of the ordinary Laplacian. Similarly, by formula
(3.2) and the results of [12], the basic Laplacian is a restriction of the ordinary Laplacian. Thus the
ordinary Laplacian preserves the basic and antibasic forms, and it decomposes as a direct sum of
the basic and antibasic Laplacians. The harmonic forms decompose into basic and antibasic parts,
and the Hodge theorem implies the result. �

Corollary 7.2. Suppose that (M,F) is a Riemannian foliation of a closed manifold of dimen-
sion n, such that the normal bundle (TF)⊥ is involutive. Then dimHk

b (M,F) ≤ dimHk (M),

dimHk
a (M,F) ≤ dimHk (M) .

Remark 7.3. It was essentially already known that dimHk
b (M,F) ≤ dimHk (M) in this case,

because using [12] and [7] we see that for a metric with basic mean curvature, δb = δ when restricted
to basic forms.

Proposition 7.4. Suppose that (M,F , g) is a Riemannian foliation of a closed manifold of di-
mension n with bundle-like metric, such that the mean curvature form is basic and the normal

bundle NF = (TF)⊥ is involutive. Then the wedge product induces a bilinear product on basic and
antibasic cohomology:

∧ : Hr
b (M,F)⊗Hs

a (M,F)→ Hr+s
a (M,F) .

Proof. The operator ε = 0 under the assumptions, so that both d and δ restrict to both basic and
antibasic forms. The wedge product of a basic and antibasic form is antibasic (since Pb (Pbα ∧ β) =
Pbα∧Pbβ from [12]), so that the result follows from the standard result in de Rham cohomology. �

In more generality, if the mean curvature is basic but without the assumption on ϕ0, the same
result is true for k = 0.

Proposition 7.5. Suppose that (M,F , g) is a Riemannian foliation of a closed manifold of dimen-
sion n. Then

H0 (M) ∼= H0
b (M,F)⊕H0

a (M,F) .

In particular, if M is connected, then H0
b (M,F) ∼= R and H0

a (M,F) ∼= {0}.

Proof. We first choose a bundle-like metric such that the mean curvature is basic. By Theorem
4.1, ∆a is the restriction of ∆ + δPbε

∗ + Pbε
∗δ to Ω∗a (M), and on functions this is ∆ + δPbε

∗. But

also ε∗ = −κa ∧+ (−1)k (χFy) (ϕ0∧) = 0 on functions, so that ∆a is the restriction of the ordinary
Laplacian. Also, by the results of [12], ∆b is the restriction of ∆ + εd + dε to Ω∗b (M), and on

functions this is ∆ + εd, but in our case ε = (−1)k (ϕ0y) (χF∧) is zero on basic one-forms so that
∆b is the restriction of ∆. Thus ∆ is the orthogonal direct sum of the restrictions to basic and
antibasic functions, and the result follows from the Hodge theorem. �

Proposition 7.6. Suppose that (M,F) is a Riemannian foliation on a closed, connected manifold.
Then,

dimH1 (M) ≤ dimH1
b (M,F) + dimH1

a (M,F) .

Proof. First, we choose a bundle-like metric with basic mean curvature. Given a ∆-harmonic form
β, consider Paβ. We see that

da(Paβ) = Pad (Paβ) = Pa (Pa (dβ)− Pb (ε∗β)) = 0.

Also,
δaPaβ = δPaβ = Paδβ + ε (Pbβ) = 0,

because ε = 0 on basic one-forms. Thus the map β 7→ Paβ maps harmonic one-forms to antibasic
harmonic one-forms. The kernel of this map is the set of basic forms β such that dβ = 0 and 0 =
δβ = (δb − ε)β = δbβ, since ε is zero on basic one-forms. Thus the kernel is the set of ∆b-harmonic
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forms. By the Hodge theorem, the result follows, since H1 (M) ∼= H1
b (M,F) ⊕ Pa

(
H1 (M)

)
⊆

H1
b (M,F)⊕H1

a (M,F). �

Remark 7.7. Note that in general H1
b (M) ↪→ H1 (M) is an injection for all foliations, so always

dimH1
b (M) ≤ dimH1 (M). Thus, if H1

a (M,F) ∼= {0}, then H1
b (M) ∼= H1 (M), so that every

harmonic one-form is basic.

Another simple class of examples of Riemannian foliations occurs when the orbits of a compact
connected Lie group action all have the same dimension. In this case, we may choose a metric such
that the Lie group acts by isometries. The Lie group acts on differential forms by pullback, and
this action commutes with d and δ. Thus, if we decompose the differential forms according to the

irreducible representations ρ ∈ Ĝ of G, we have the L2-orthogonal direct sum

Ω∗ (M) =
⊕
ρ∈Ĝ

Ω∗,ρ (M)

where Ω∗,ρ (M) is the space of differential forms of type ρ : G→ U (Vρ). That is,

Ω∗,ρ (M) =
⋃

f∈HomG(Vρ,Ω∗(M))

f (Vρ) .

Because of the metric invariance, both d and δ respect this decomposition. It is well-known that the
harmonic forms are always invariant (i.e. belong to Ω∗,ρ0 (M), where ρ0 is the trivial representation).
Also, for the foliation F by G-orbits, we have Ω∗b (M) ⊆ Ω∗,ρ0 (M). We let dj , δj refer to the
restrictions of d, δ to Ωj , and we let da,j , δaj , db,j , δbj denote the corresponding restrictions to basic
and antibasic forms. We use the superscript ρ to denote further restrictions to Ω∗,ρ (M). Then we
have

dj =
⊕
ρ∈Ĝ

dρj ,

dbj = dρ0bj ,

daj = dρ0aj ⊕
⊕
ρ∈Ĝ
ρ6=ρ0

dρj ,

δbj = δρ0bj ,

δaj = δρ0aj ⊕
⊕
ρ∈Ĝ
ρ 6=ρ0

δρj .

Thus, in computing either the basic or antibasic cohomology, it is sufficient to restrict to invariant
forms. The result below follows.

Proposition 7.8. Let G be a connected, compact Lie group that acts on a connected closed manifold
M by isometries. Let (M,F , g) be the Riemannian foliation with bundle-like metric given by the
G-orbits. Then

Hj
b (M,F) ∼=

ker dρ0bj
im dρ0b(j−1)

; Hj
a (M,F) ∼=

ker δρ0aj
im δρ0a(j+1)

.

In particular,
H0
b (M,F) ∼= R; H0

a (M,F) ∼= {0} .

Proof. The first part follows from the discussion above. Next, observe that all G-invariant functions
are basic, so that Ω0

b (M,F) = Ω0,ρ0 (M), so that ker
(
dρ0b0
)

= ker (dρ00 ) consists of the constant
functions, and ker δρ0a0 = {0}. The second part also follows from Proposition 7.5, since the mean
curvature is always basic in this case. �
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8. The case of Riemannian flows

In this section, we study tautness and cohomology for Riemannian flows. The following result
shows a relationship between basic and antibasic cohomology when the flow is taut. We will see
evidence of this behavior in Example 9.1 and Example 9.2. We will use standard techniques in the
study of these flows, which can also be found for example in [3], [11], [4].

Proposition 8.1. Suppose that (M,F) is a Riemannian flow on a closed manifold with bundle-like
metric g with basic mean curvature κ and characteristic form χF . If κ = 0, then for all r, the map
α 7→ χF ∧ α maps basic harmonic r-forms to antibasic harmonic (r + 1)-forms injectively. Thus,
dim

(
Hr+1
a (M,F)

)
≥ dim (Hr

b (M,F)) whenever [κ] = 0 ∈ H1
b (M,F).

Proof. Suppose that [κ] = 0. We then choose a bundle-like metric such that κ = 0. Note that ϕ0

(from Rummler’s formula) is basic for every Riemannian flow with bundle-like metric with basic
mean curvature, and so it is certainly basic in this case. With this metric, for any basic harmonic
r-form α,

d (χF ∧ α) = dχF ∧ α− χF ∧ dα
= ϕ0 ∧ α,

which is basic, so that da (χF ∧ α) = 0. Let χ#
F = ξ, and choose the usual adapted orthonormal

frame {bi} = {ei}∪{ξ} near a point, where the ei are basic and ∇Q-parallel at the point in question.
Note that δχF = 0 because the metric is bundle-like, and then

δ (χF ∧ α) = −
∑
i

biy∇Mbi (χF ∧ α)

= −
∑
i

biy
(
∇Mbi χF ∧ α+ χF ∧∇Mbi α

)
= (δχF )α+

∑
i

∇Mbi χF ∧ (biyα)−∇Mξ α+ χF ∧
∑
i

(
biy∇Mbi α

)
=

∑
i

∇Mbi χF ∧ (biyα)−∇Mξ α− χF ∧ δα.

But since α is basic harmonic, δα = δbα−εα = 0+ϕ0y (χF ∧ α) = χF ∧(ϕ0yα) . Thus, χF ∧δα = 0,
so that

δ (χF ∧ α) =
∑
i

∇Mbi χF ∧ (biyα)−∇Mξ α

=
∑
i

∇Mei χF ∧ (eiyα)−∇Mξ α

=
∑
i

(hei)
[ ∧ (eiyα)−∇Mξ α

=
∑
i,j

g(hei, ej)e
j ∧ (eiyα)−∇Mξ α

= −
∑
j

ej ∧ ((hej)yα)−∇Mξ α,

where the skew-adjoint O’Neill tensor h satisfies hX = ∇MX ξ for X ∈ Γ (NF). Now observe from

one hand that
(
∇Mξ α

) (
ξ, ei1 , ..., eir−1

)
= 0 since α is basic and κ = 0. On the other hand, we use

∇Mξ Z = ∇Qξ Z + h (Z)− κ (Z) ξ = ∇Qξ Z + h (Z)
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for Z ∈ Γ (NF) to compute(
∇Mξ α

)
(ei1 , ..., eir) = ξ (α (ei1 , ..., eir))−

∑
k

α
(
ei1 , ...,∇Mξ eik , ..., eir

)
= ξ (α (ei1 , ..., eir))−

∑
k

α (ei1 , ..., heik , ..., eir)

=
(
∇Qξ α

)
(ei1 , ..., eir)−

∑
k

α (ei1 , ..., heik , ..., eir)

= −
∑
k

α (ei1 , ..., heik , ..., eir) .

Now we write

∇Mξ α =
1

r!

∑
(i1,...,ir)

(
∇Mξ α

)
(ei1 , ..., eir) e

i1 ∧ ... ∧ eir

= − 1

r!

∑
α (ei1 , ..., heik , ..., eir) e

i1 ∧ ... ∧ eir

= − 1

r!

∑
(−1)k−1 (heikyα) (ei1 , ..., êik , ..., eir) e

i1 ∧ ... ∧ eir

= − r
r!

∑
(he`yα)

(
ei1 , ..., eir−1

)
e` ∧ ei1 ∧ ... ∧ eir−1

= −
∑
`

e` ∧ (he`yα) .

Thus, substituting we have

δ (χF ∧ α) = −
∑
j

ej ∧ ((hej)yα)−∇Mξ α

= −
∑
j

ej ∧ ((hej)yα) +
∑
`

e` ∧ (he`)yα

= 0,

so that χF ∧ α ∈ Hr+1
a (M,F). If α is nonzero, then χF ∧ α is nonzero, so the class [χF ∧ α] is

nontrivial. �

Remark 8.2. In particular, if [κ] = 0 ∈ H1
b (M,F), then dimH1

a (M,F) ≥ 1.

Lemma 8.3. Suppose that (M,F) is a Riemannian flow on a closed, connected manifold, with a
bundle-like metric chosen so that the mean curvature is basic. Then for any antibasic one-forms α
and β,

〈∆aα, β〉 = 〈∆α, β〉 −
∫
M
Pb (χF , α)Pb (χF , β) |ϕ0|2 dvg.

Proof. From Theorem 4.1,

∆aα = ∆α+ δPbε
∗α+ Pbε

∗δα.

Since ε∗δα = 0 and

ε∗α = −χFy (ϕ0 ∧ α) = − (χF , α)ϕ0,

we have

δPbε
∗α = −δPb ((χF , α)ϕ0) = −δ (Pb (χF , α)ϕ0)

= dfyϕ0 − fδϕ0,
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where f = Pb (χF , α). Now, using δϕ0 = δbϕ0 − εϕ0 with εϕ0 = −ϕ0y(χF ∧ ϕ0), we write

〈∆aα, β〉 = 〈∆α, β〉+ 〈dfyϕ0 − fδϕ0, β〉
= 〈∆α, β〉+ 〈ϕ0, df ∧ β〉 − 〈fδϕ0, β〉
= 〈∆α, β〉 − 〈f (δb − ε)ϕ0, β〉
= 〈∆α, β〉+ 〈fεϕ0, β〉
= 〈∆α, β〉 − 〈f (ϕ0yχF ∧ ϕ0) , β〉

= 〈∆α, β〉 −
〈
f |ϕ0|2 χF , β

〉
= 〈∆α, β〉 −

∫
M
f |ϕ0|2 Pb (χF , β) dvg

= 〈∆α, β〉 −
∫
M
Pb (χF , α)Pb (χF , β) |ϕ0|2 dvg.

This completes the proof. �

Theorem 8.4. Suppose that (M,F) is a Riemannian flow on a closed, connected manifold. If
H1 (M) = {0}, then

dimH1
a (M,F) = 1.

If [κ] is a nonzero class in H1
b (M,F) ⊆ H1 (M), then

dimH1
a (M,F) = 0.

Proof. We choose the bundle-like metric so that κ is basic-harmonic 1-form (as in [10]). We write
any antibasic one-form α as

α = fχF + β = (faχF + β) + (fbχF ) = α1 + α2,

where fa = Paf , fb = Pbf , α1 = faχF + β, α2 = fbχF and β is an antibasic section of N∗F . The
L2 inner product gives

〈∆aα, α〉 = 〈∆aα1, α1〉+ 〈∆aα2, α2〉+ 2 〈∆aα1, α2〉
= 〈∆aα1, α1〉+ 〈∆aα2, α2〉+ 2 〈∆a (faχF ) , fbχF 〉+ 2 〈∆aβ, fbχF 〉

= 〈∆α1, α1〉+ 〈∆ (fbχF ) , fbχF 〉 −
∫
M
f2
b |ϕ0|2 dvg + 2 〈∆ (fbχF ) , faχF 〉+ 2 〈∆(fbχF ), β〉 .

(8.1)

In the last equality, we use the formula in Lemma 8.3. In order to express each of the above inner
product, we will compute ∆ (fbχF ) , for any basic function fb. To simplify the notation, we will
omit the subscript “b” in fb in the following computations. First we have (keep in mind that f = fb
is basic)

δ (fχF ) = −dfyχF + fδχF = 0

since χF is divergence free. Therefore, d(δ(fχF )) = 0. Next, using Rummler’s formula dχF =
−κ ∧ χF + ϕ0, we write

d (fχF ) = fdχF + df ∧ χF = −fκ ∧ χF + fϕ0 + df ∧ χF ,
δd (fχF ) = δ (−fκ ∧ χF + fϕ0 + df ∧ χF )

= dfy (κ ∧ χF − ϕ0)− fδ (κ ∧ χF − ϕ0) + δ (df ∧ χF ) . (8.2)

To express the divergence terms in the above equality, we consider an orthonormal frame {bi} of
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TM and we compute for any basic 1-form θ,

δ (θ ∧ χF ) = −
∑
i

biy∇Mbi (θ ∧ χF )

= −
∑
i

biy
(
∇Mbi θ ∧ χF + θ ∧∇Mbi χF

)
= (δθ)χF +∇Mξ θ −∇Mθ#χF − θ ∧ δχF
= (δθ)χF +∇Mξ θ −∇Mθ#χF

= (δbθ)χF +
[
ξ, θ#

][
= (δbθ − (κ, θ))χF .

Therefore, we deduce for either θ = κ or θ = df that

δ (κ ∧ χF ) = − |κ|2 χF and δ (df ∧ χF ) = (∆bf − (df, κ))χF

since κ is basic harmonic. Then we substitute into (8.2) to get

δd (fχF ) = dfy (κ ∧ χF )− dfyϕ0 − fδ (κ ∧ χF ) + fδϕ0 + δ (df ∧ χF )

= (df, κ)χF − dfyϕ0 + f |κ|2 χF + fδϕ0 + (∆bf − (df, κ))χF

= −dfyϕ0 + f |κ|2 χF + fδϕ0 + (∆bf)χF

= −dfyϕ0 + f |κ|2 χF + f (δb − ε)ϕ0 + (∆bf)χF

since δPb = Pbδ − εPb from (3.2). As εϕ0 = −ϕ0y (χF ∧ ϕ0) = − |ϕ0|2 χF , we arrive at (replace f
by fb)

∆ (fbχF ) = −dfbyϕ0 + fb |κ|2 χF + fbδbϕ0 + fb |ϕ0|2 χF + (∆bfb)χF .

In particular, one can easily get that

〈∆ (fbχF ) , faχF 〉 = 0 and 〈∆ (fbχF ) , β〉 = 0, (8.3)

since β is antibasic and orthogonal to ξ. Also, we have that

〈∆ (fbχF ) , fbχF 〉 =

∫
M

(
f2
b |κ|

2 + f2
b |ϕ0|2 + |dfb|2

)
dvg. (8.4)

Now substituting Equations (8.3) and (8.4) into Equation (8.1), we find that

〈∆aα, α〉 = 〈∆α1, α1〉+

∫
M

(
f2
b |κ|

2 + |dfb|2
)
dvg,

which is non-negative. Then 〈∆aα, α〉 = 0 if and only if α1 is harmonic (i.e. α1 ∈ H1(M)), fb is
constant and fbκ = 0. Recall that α = α1 + α2 with α2 = fbχF . In the case where H1(M) = {0}
and α is ∆a-harmonic 1-form, then α1 = 0 and α = fbχF = (constant)χF . But this constant
cannot be zero in view of Remark 8.2. Hence dimH1

a (M,F) = 1. This proves the first part of
the theorem. To prove the second part, we use the exact Gysin sequence for non-taut Riemannian
flows established in [17]

0→ H1
b (M)→ H1 (M)→ H0

κ,b (M)→ ...

where H0
κ,b (M) ∼= Hq

b (M), which is zero because the foliation is not taut. Thus, H1
b (M) ∼= H1 (M).

By the proof of Proposition 7.6, we get that Pa
(
H1 (M)

)
= 0. That means for every harmonic one-

form ω, we have Paω = 0, and thus is basic. Hence 〈∆aα, α〉 = 0 implies that α1 is basic-harmonic
and fb = 0. Thus both α1 and α2 are zero and then H1

a (M,F) = {0}. �
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Remark 8.5. It might seem at first glance that Proposition 8.4 may contradict Proposition 7.1.
But in fact, if H1 (M) = {0} for some compact manifold M , then any Riemannian flow of M must
have a normal bundle that is not involutive. The reason is as follows. First, the mean curvature
can be chosen to be zero after a change in bundle-like metric, since the mean curvature must be
exact. If the normal bundle is involutive, then dχF = 0 from Rummler’s formula, and δχF = 0
(true for any Riemannian flow), so that χF is a harmonic one-form and therefore represents a
nontrivial class in H1 (M), a contradiction. So Proposition 7.1 does not apply.

9. Examples

We illustrate the antibasic cohomology and our theorems in some one-dimensional examples of
foliations. These examples are certainly not meant to comprise a comprehensive list.

To simplify the exposition, we denote the Betti numbers for each example foliation (M,F) as
follows:

hj = dimHj (M) , hjb = dimHj
b (M,F) , hja = dimHj

a (M,F) .

We start with the Hopf fibration, which is a taut Riemannian flow.

Example 9.1. Using Theorem 8.4 above, we consider the Hopf fibration of S3 ⊆ C2 → CP 1 via
(z0, z1)→ [z0, z1]. The leaves of the foliation F are the orbits of the S1 action eit 7→

(
eitz0, e

itz1

)
.

This is a Riemannian flow, but the normal bundle is not involutive. The lengths of the circular
leaves are constant, so the mean curvature is zero. By Theorem 8.4, h1

a = 1, and from Proposition
7.8, h0

a
∼= 0. Also H2

a

(
S3,F

)
⊆ H2

(
S3
)

because of Lemma 2.4, so that h2
a = 0, and h3

a = h3 = 1.
In summary, we have

(h0, h1, h2, h3) = (1, 0, 0, 1),

(h0
b , h

1
b , h

2
b) = (1, 0, 1),

(h0
a, h

1
a, h

2
a, h

3
a) = (0, 1, 0, 1).

The following example is a Riemannian flow of a 3-manifold that is not taut.

Example 9.2. We will compute the antibasic cohomology groups of the Carrière example from [3]

in the 3-dimensional case. Let A =

(
2 1
1 1

)
. We denote respectively by V1 and V2 the eigenvectors

associated with the eigenvalues λ and 1
λ of A with λ > 1 irrational. Let the hyperbolic torus T3

A

be the quotient of T2 × R by the equivalence relation which identifies (m, t) to (A(m), t + 1). The
flow generated by the vector field V2 is a transversally Lie foliation of the affine group. The Betti
numbers of this closed manifold are hj = 1, for 0 ≤ j ≤ 3. We choose the bundle-like metric (letting
(x, s, t) denote the local coordinates in the V2 direction, V1 direction, and R direction, respectively)
as

g = λ−2tdx2 + λ2tds2 + dt2.

The mean curvature of the flow is κ = κb = log (λ) dt, since χF = λ−tdx is the characteristic form
and dχF = − log (λ)λ−tdt ∧ dx = −κ ∧ χF . It is easily seen that the basic cohomology satisfies

hjb = 1 for j = 0, 1 and h2
b = 0 (class of the mean curvature class being nonzero implies this; see

[1]). The foliation has an involutive normal bundle, so that Proposition 7.1 applies, so that h2
a = 1,

h3
a = 1 and hka = 0 for k = 0, 1. In summary,

(h0, h1, h2, h3) = (1, 1, 1, 1),

(h0
b , h

1
b , h

2
b) = (1, 1, 0),

(h0
a, h

1
a, h

2
a, h

3
a) = (0, 0, 1, 1).

We now consider an example of a foliation that is not Riemannian (for any metric). This is a
standard example of a foliation on a connected, compact manifold with infinite-dimensional basic
cohomology; this example is from [9].
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Example 9.3. Let M be the closed 3-manifold defined as R × T 2�Z, where T 2 = R2�Z2 and

m ∈ Z acts on R×T 2 by m (t, x) = (t+m,Amx), where A is the matrix

(
1 1
0 1

)
. We define the

leaves of the foliation to be the t-parameter curves. Then observe that that leaf closures intersect
each torus with a set of the form S × {x2}, where x2 ∈ R�Z and S is a finite number of points
for rational x2 and is R�Z for irrational x2. Thus, the basic forms in the “coordinates” (t, x1, x2)
have the form

Ω0
b (M) =

{
f ∈ Ω0(M) : f(t, x1, x2) is constant in x1, t

}
,

Ω1
b (M) =

{
f dx2 : f ∈ Ω0

b(M)
}
,

Ω2
b (M) =

{
f dx1 ∧ dx2 : f ∈ Ω0

b(M)
}
.

From this we can easily calculate that h0
b = 1, h1

b = 1, and H2
b (M,F) ∼= Ω2

b (M) , which is in-
finite dimensional. One may also check with a cell complex that the ordinary homology satisfies
Hj (M,Z) ∼= Z for j = 0, 3 and Hj (M,Z) ∼= Z2 for j = 1, 2, so that the ordinary de Rham coho-
mology satisfies hj = 1 for j = 0, 3 and hj = 2 for j = 1, 2. We choose the metric in the ∂t, ∂x1 , ∂x2
basis as

(gij) =

 1 0 0
0 1 −t
0 −t 1 + t2

 .

One can check the invariance with respect to the action of m ∈ Z; it is chosen so that
{e1 = ∂t, e2 = ∂x1 , e3 = t∂x1 + ∂x2} forms an orthonormal basis at each (t, x1, x2). Then the metric
on covectors with basis {dt, dx1, dx2} is

(
gij
)

=

 1 0 0
0 1 + t2 t
0 t 1

 ,

and the dual orthonormal basis is
{
e1 = dt, e2 = dx1 − tdx2, e

3 = dx2

}
. Note also that

g = det(gij) = 1.
We now compute the antibasic forms with respect to this metric, which are the sets of smooth

forms that are L2-orthogonal to the sets of basic forms listed above. For any x2 ∈ R�Z, let Cx2
denote the torus {(t, x1, x2) : t, x1 ∈ R�Z}. Then:

Ω0
a(M) =

{
f ∈ Ω0(M) :

∫
Cx2

f (t, x1, x2) dt ∧ dx1 = 0 for all x2 ∈ R�Z

}
,

Ω1
a (M) =

{
f dx2 + g (dx1 − tdx2) + h dt : f ∈ Ω0

a(M), g, h ∈ Ω0(M)
}
,

Ω2
a (M) =

{
f dx1 ∧ dx2 + g dt ∧ (dx1 − tdx2) + h dt ∧ dx2 : f ∈ Ω0

a(M), g, h ∈ Ω0(M)
}
,

Ω3
a (M) = Ω3 (M) .

Immediately we have h3
a = 1. We compute the divergence on one-forms:

〈df, adt+ c1 (dx1 − tdx2) + c2dx2〉 =

∫
fta+ fx1c1 + (tfx1 + fx2) c2

=

∫
f
(
−at − (c1)x1 − t (c2)x1 − (c2)x2

)
;

δ (adt+ c1 (dx1 − tdx2) + c2dx2) = −at − ∂1 (c1)− (t∂1 + ∂2) (c2) ,

which makes sense since all three vector fields are divergence-free.
We next compute the divergence of 2-forms, writing in terms of our frame and coframe. Note

that in terms of an orthonormal frame {ei} with Christoffel symbols defined by ∇eiej = Gkijek
or d

(
ek
)

= −Gkijei ∧ ej (using Einstein summation convention here and subsequently) we have
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δ
(
bije

i ∧ ej
)

= −ei(bij)ej + ej(bij)e
i + bij

(
Gi``δ

j
r −Gj``δ

i
r −Gijr +Gjir

)
er. In what follows, we will

assume that the two form is anti-symmetrized, so that bji = −bij, and then the formula above

simplifies to δ(bije
i ∧ ej) = −2ei(bij)e

j + 2bij(G
i
``δ

j
r − Gijr)er. In our case with e1 = ∂t, e2 = ∂x1,

e3 = t∂x1 + ∂x2, the covariant derivatives give 1
2 = G2

13 = G1
23 = G1

32 = −G3
12 = −G3

21 = −G2
31

with all other Gkij zero. Also, all Lie brackets between these basis vector fields are zero except that

[e1, e3] = −[e1, e3] = e2. After a bit of calculation, we have (for antisymmetrized bije
i ∧ ej)

δ
(
bije

i ∧ ej
)

= (−e2 (2b21)− e3 (2b31)) e1 + (−e1 (2b12)− e3 (2b32)− 2b13) e2 + (−e1 (2b13)− e2 (2b23)) e3,

which implies also that (substituting bije
i ∧ ej below with 1

2bije
i ∧ ej − 1

2bije
j ∧ ei above)

δ

∑
i<j

bije
i ∧ ej


= (e2 (b12) + e3 (b13)) e1 + (−e1 (b12) + e3 (b23)− b13) e2 + (−e1 (b13)− e2 (b23)) e3. (9.1)

Finally we calculate divergence of 3-forms:

δ
(
f e1 ∧ e2 ∧ e3

)
= − ∗ d ∗

(
f e1 ∧ e2 ∧ e3

)
= − ∗ (df)

= −1

2

∑
σ∈S3

sgn (σ) eσ1 (f) eσ2 ∧ eσ3

= −e1(f)e2 ∧ e3 − e2(f)e3 ∧ e1 − e3(f)e1 ∧ e2.

From these formulas, we note that the divergence of a basic one-form (one of the type c2 (x2) dx2)
is always a basic function (−∂2c2), so that δ maps basic one-forms to basic functions and antibasic
one-forms to antibasic functions. Then h0

a = 0, since in this case

H0 (M) =
Ω0

im δ|Ω1

=
Ω0
a ⊕ Ω0

b(
im δ|Ω1

a

)
⊕
(

im δ|Ω1
b

)
=

Ω0
a(

im δ|Ω1
a

) ⊕ Ω0
b(

im δ|Ω1
b

)
= H0

a (M,F)⊕H0
b (M,F) ∼= H0

a (M,F)⊕H0 (M) .

(Note that the first and second step fail for foliations in general).
We now compute H2

a (M,F). We have

H2
a (M,F) =

ker δ|Ω2
a

im δ|Ω3

⊆
ker δ|Ω2

im δ|Ω3

= H2 (M) ∼= R2.

In the ordinary δ-cohomology, the generators of H2 (M) are
[
e1 ∧ e2 = dt ∧ (dx1 − tdx2)

]
and[

e2 ∧ e3 = dx1 ∧ dx2

]
. But b12dt ∧ (dx1 − tdx2) = b12e

1 ∧ e2 is antibasic and b23dx1 ∧ dx2 is basic

for any choice of constants b12, b23. Thus, h2
a = 1.

We now consider 1-forms. Observe that basic 2-forms have the form b23 (x2) dx1 ∧ dx2 =
b23 (x2) e2∧e3, and from formula (9.1) above δ (b23 (x2) dx1 ∧ dx2) = b′23(x2)e2 = b′23(x2)(dx1−tdx2)
for all basic functions b23; note that the image is an antibasic one-form. It follows that the image
of δa is a proper subset of the image of δ on 2-forms, which is contained in the space of δ-closed
antibasic one-forms. Thus, we have

H1
a (M,F) =

ker δ|Ω1
a

im δ|Ω2
a

�
ker δ|Ω1

a

im δ|Ω2

⊆
ker δ|Ω1

im δ|Ω2

= H1 (M) ∼= R2.
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In fact, we will show H1
a(M,F) is infinite-dimensional. Consider the subspace {F ′(x2)e2 : F ∈

C∞(R/Z)}/ ker δ|Ω2
a

of H1
a(M,F); The set {F ′(x2)e2} is clearly infinite-dimensional and is a sub-

space of ker δ|Ω1
a
. We wish to determine when two elements of this space are equivalent mod δ(Ω2

a).

If δ(β) = F ′(x2)e2, then by Hodge theory β = −F (x2)e2 ∧ e3 + (harmonic 2-form) + (element of
Im δ|Ω3). The first term is basic, and the second term is (constant)e2∧e3+ (constant)e1∧e2, so we
may rewrite β = −(F (x2)+c1)e2∧e3+ (antibasic 2-form). The form β can be antibasic if and only
if F (x2) + c1 = 0, so we conclude that the space {F ′(x2)e2}/δ(Ω2

a) is infinite-dimensional. Thus,
h1
a =∞.

In summary,

(h0, h1, h2, h3) = (1, 2, 2, 1),

(h0
b , h

1
b , h

2
b) = (1, 1,∞),

(h0
a, h

1
a, h

2
a, h

3
a) = (0,∞, 1, 1).

The following non-Riemannian flow is a simple example where the basic projection Pb and antiba-
sic projection Pa do not preserve smoothness. In spite of that, the basic and antibasic cohomology
can be calculated. From the calculations, we also see that the Hodge theorem is false for this
foliation.

Example 9.4. Let M be the flat torus [0, 2]× [0, 1] with opposite sides of the boundary identified.
Let φ (x) be a smooth function on the circle [0, 2] mod 2 such that φ is positive and ≤ 1 on (0, 1) and
identically zero on [1, 2]. Consider the foliation that whose tangent space at each point is spanned

by the vector field V (x, y) =

(
φ (x) ,

√
1− φ (x)2

)
. All the leaves in the region 0 < x < 1 are

noncompact and have x = 0 and x = 1 in their closure, and the leaves in the region 1 ≤ x ≤ 2 are
vertical circles. The set of basic functions is

Ω0
b(M) =

{
f : [0, 2]× [0, 1]→ R : f (x, y) = g (x) for a smooth function g

on R�2Z such that g (x) = constant for x ∈ [0, 1] mod 2

}
.

Since every basic normal vector field approaches 0 as x → 0+ and x → 1−, there are no bounded
basic one-forms for 0 < x < 1, so we have

Ω1
b(M) =

{
ω = h (x) dx : h is a smooth function on R�2Z

such that h (x) = 0 for x ∈ [0, 1] mod 2

}
.

Then, the set of antibasic forms are those smooth forms orthogonal to Ω∗b (M) in L2. We obtain

Ω0
a(M) =

{
f : M → R :

∫ 1

0
f (x, y) dy = 0 for x ∈ [1, 2] mod 2 and

∫ 1

0

∫ 1

0
f (x, y) dx dy = 0

}
,

Ω1
a (M) =

{
α = a1dx+ a2dy :

∫ 1

0
a1 (x, y) dy = 0 for x ∈ [1, 2] mod 2.

}
.

Note that in this example, the basic and antibasic projections are not smooth maps to differential
forms. Observe that on functions,

Pb (f) (x, y) =

{
average of f over [0, 1]2 x ∈ (0, 1)
average of f (x, ·) over [0, 1] x ∈ (1, 2)

,

so for instance

Pb(sin(πx)) =

{
2
π x ∈ (0, 1)

sin(πx) x ∈ (1, 2)
,
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which is not a continuous function. Likewise, Pa (sin (πx)) = sin(πx)− Pb(sin(πx)) is not smooth.
In any case, we may calculate the basic and antibasic cohomology groups.

H0
b (M,F) = ker

(
d : Ω0

b(M)→ Ω1
b(M)

) ∼= R,

H1
b (M,F) =

Ω1
b(M)

im
(
d : Ω0

b(M)→ Ω1
b(M)

)
=

Ω1
b(M){

h (x) dx :
∫ 2

1 h (x) dx = 0 and h (x) = 0 for x ∈ [0, 1]
}

= {[c · bump on [0, 1]]} ∼= R.

Note that H1
b is not represented by a basic harmonic form. Also,

H0
a (M,F) =

Ω0
a(M)

im (δ : Ω1
a(M)→ Ω0

a(M))

=
Ω0
a(M){

(a1)x + (a2)y :
∫ 1

0 a1 (x, y) dy = 0 for x ∈ [1, 2] mod 2
} = {0} ,

H1
a (M,F) =

ker
(
δ : Ω1

a(M)→ Ω0
a(M)

)
im (δ : Ω2(M)→ Ω1

a(M))

=

{
a1dx+ a2dy :

∫ 1
0 a1 (x, y) dy = 0 for x ∈ [1, 2] mod 2 and (a1)x + (a2)y = 0

}
{fydx− fxdy}

= {[c dy]} ∼= R,
H2
a (M,F) = H2 (M) ∼= R.

And we also have h0 = h2 = 1, h1 = 2. In summary,

(h0, h1, h2) = (1, 2, 1),

(h0
b , h

1
b) = (1, 1),

(h0
a, h

1
a, h

2
a) = (0, 1, 1).
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