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Abstract. We introduce the biharmonic Steklov problem on differential
forms by considering suitable boundary conditions. We characterize its
smallest eigenvalue and prove elementary properties of the spectrum. We
obtain various estimates for the first eigenvalue, some of which involve eigen-
values of other problems such as the Dirichlet, Neumann, Robin and Steklov
ones. Independently, new inequalities relating the eigenvalues of the latter
problems are proved.
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1 Introduction

Let (M™,g) be an n-dimensional compact Riemannian manifold with nonempty smooth boundary
OM. Denote by v the inward unit vector field normal to the boundary and by Af := —tr(V2f)
the Laplace operator applied to a smooth function f on M. The following fourth order eigenvalue
boundary problem

AZf =0 onM

f =0 ondM (1)

Af—q% =0 onJdM,

also called biharmonic Steklov problem I, or biharmonic Steklov for simplicity, was first introduced
by Kuttler and Sigillito [16] and Payne [19]. Its physical interpretation in terms of the deformation
of an elastic plate under the action of transversal forces can be found in e.g. [0, p. 316] and [26] p.
2637]). When M is a bounded domain in R", the spectrum of this problem has been studied in [6]
and proved to be discrete consisting of positive eigenvalues of finite multiplicities (see also [2] for
the case when the boundary is not smooth). Variational characterizations of the first eigenvalue ¢
have been also given in [6] (see also [15]). Moreover, in the case of a ball, the spectrum has been
calculated explicitly.
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In the case of a compact n-dimensional Riemannian manifold M with smooth boundary OM, sharp
estimates for the first eigenvalue ¢; of the biharmonic Steklov operator are given in [26] and [22].
It is shown that Vol(9)
0
< —2. 2
M= Nol(M) 2)

In [22, Thm. 2], Raulot and Savo proved that, if M is a geodesic ball in a space form, then is
an equality (see also [26, Thm. 1.3]). Under some assumptions on the Ricci curvature of M and
if the mean curvature of the boundary is bounded below by a positive constant Hy, then the first
eigenvalue ¢ also satisfies

q1 = nHy.

Moreover, equality holds if and only if M is isometric to a ball of radius H%) in R™ (see |26, Thm.

1.2] and [22, Thm. 2]). For other recent results on the biharmonic Steklov eigenvalue problem, we
refer to [8, [10] and the references listed therein.

On the other hand, recall that a compact Riemannian manifold M with smooth nonempty boundary
OM is called a harmonic domain [21) p. 893] if and only if it supports a (necessarily unique) solution
f to the Serrin boundary value problem

Af =1 on M
f =0 onoM (3)
of =c onoM

for some constant ¢ € R. From [25], 27], we know that the only harmonic domains in R™ are the

Euclidean balls of radius nc = %. Independently, it is not difficult to check that a solution to

the Serrin problem is an eigenfunction of .

The aim of this paper is first to extend the biharmonic Steklov problem to the context
of differential forms. As we mentioned above, there is a relationship between problems and
, hence the idea is to also define the Serrin problem on differential forms. For this purpose, we
assume that the manifold M carries a non-trivial parallel form and introduce the generalization of
(13) (see (4))). In this case, we show that M is a harmonic domain if and only if there exists on M
a solution to . Also in Section |2 we provide a natural extension of problem to the case of
differential forms (problem ) Applying the techniques used in [6] by Ferrero, Gazzola and Weth,
we show in Theorem that problem has a discrete spectrum consisting of a countable number
of positive eigenvalues of finite multiplicities. This involves proving the ellipticity of problem
(see Lemma in the appendix). Moreover, we give two variational characterizations of the first
eigenvalue of this problem (Theorem [2.6) which will be useful to establish inequalities in the
sequel.

In Section we obtain different estimates regarding the eigenvalues of problem . As a preliminary
step, we prove an interesting property of that problem, namely its invariance by the Hodge star
operator. On the other hand, under curvature assumptions, using a previous result by Raulot and
Savo [22, Thm. 10], we derive a lower bound for the first eigenvalue ¢ p, which generalizes the
estimates [26, Thm. 1.2] and [22, Thm. 2|. On the other hand, when the manifold M supports a
non-trivial parallel p-form, we show that

< Vol(OM)
Br = No1(M)

with equality if and only if M is a harmonic domain. Surprisingly, when M is a domain of R", the
eigenvalues of the biharmonic Steklov problem on differential forms are the same as those of the
scalar problem, without taking into consideration their multiplicities. It should be noted that the
same type of result is true for the eigenvalues of the Dirichlet problem. We end Section [3| with an
inequality relating the eigenvalues corresponding to degrees p — 1, p and p + 1 on the sphere. That



inequality is established by first proving a more general result when M is isometrically immersed
in a Euclidean space and by using the variational characterization of the first eigenvalue. The
computations involved in these results being rather technical, we place the details in the appendix
(Lemma and Proposition to lighten the text.

In Sections [] and [5 we establish several bounds concerning the eigenvalues of various differential
operators, again using variational characterizations. For example, we give estimates involving the
eigenvalues of the Robin eigenvalue problem introduced in [4] and those of Neumann ,
Dirichlet , biharmonic Steklov eigenvalue problems on differential forms (Theorems and
. Note that similar results are known in the case of scalar problems (see [I3, Thm. 1.17]). In
Theorem we also give an estimate, under some curvature condition along the boundary, for the
difference between the first eigenvalues of the Robin problem on ¢ and (¢ — p)-forms, for some p
and ¢ such that p < gq.

Other inequalities involving eigenvalues of the Steklov problem on forms (see Section are obtained
using properties already established for the eigenvalues and eigenforms of problem .
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2 Biharmonic Steklov operator on differential forms

2.1 Serrin problem

In this subsection, we extend the Serrin problem to differential forms. This extension will motivate
us to define the biharmonic Steklov problem on differential forms.

Recall that the Serrin problem is given by the following [25]: Let M C R™ be a bounded domain
and let f be a solution to the problem

Af =1 onM
f =0 ondM.

If the inner normal derivative of the function f is a constant ¢, then the domain M must be a ball
of radius nc and the function f has the form (n2c? — r2)/2n. Here c is equal to %. The proof
that the Euclidean ball is the unique domain in R™ supporting a solution to the Serrin problem was
given in |25, Thm. 1] by using the method of moving planes, which is based on Hopf’s maximum
principle. In [27], H.F. Weinberger suggested an elementary proof introducing so-called P-functions
for the Laplacian. Since then, the Serrin problem has been generalized to several contexts and when

the ambient space is a simply connected space form [14} [I8], [3].

A natural question to ask in this set-up is whether the Serrin problem can be extended to differential
forms on a domain in R™. For this purpose, we fix p € {0,---,n} and consider, on the set of
differential p-forms QP (M), a solution to the system

Aw =wy on M
w =0 on OM,
where wy is a given parallel form on R™ assumed to be of norm 1. We now set the following question:

If the conditions v.idw = ct*wy and *(dw) = —cr_wyp are satisfied on M for some constant ¢ and
where v is the inner unit normal vector field to M, can one deduce that the manifold M is a ball



of radius nc? Here, + : M — M denotes the inclusion map. Notice that for p = 0, the problem

that we propose reduces to the usual one on functions. The answer of this question is given in
Proposition [2.1] below.

Proposition 2.1 Let M be a compact manifold with smooth nonempty boundary OM and carrying
a nontrivial parallel p-form wy.

1. If M is a harmonic domain, then for the solution f to the Serrin problem on M the p-form
w = f - wqg is the unique solution to the boundary value problem

Aw = wp on M

Wy =0 on OM (@)
vadw = ct*wy on OM

*(dw) = —cvawg on OM

for some constant ¢ € R.

2. Conversely, if has a solution w € QP(M), then assuming w.l.o.g. that |wo| =1 on M, we
have that w = f - wy where f solves . As a consequence, M must be a harmonic domain.

Proof. Before proving the proposition, we begin with the following fact. Given any parallel form
a and a smooth function h on M, we have that A(ha) = (Ah)a. To see this, we first have
d(ha) = dh A a and §(ha) = —dhua, as « is parallel. Therefore, if we take {e1, - ,e,} a local
orthonormal frame of T'M, we compute

A(ha) = d(dh A a) —d(dhoc)

= = ein(Ve,dh Aa) = > e A (Ve,dhaa)
=1 =1
= (Ah)a+ > VedhA(ejaa) =Y e A(Ve,dhaa)
i=1 =1
= (Ah)a,

since Vdh is a symmetric 2-tensor field.
As a first consequence, if f solves , then for any parallel p-form wy on M the p-form w := f - wyq
solves Aw = (Af)-wo = wo on M together with w, = f|,,,-wo = 0. As for the other two boundary

conditions, note that, if wy,, = 0, then by Vxw = 0 for all X € TOM we have that dw = WP AV,w
and dw = —v1 V,w. Therefore,

vidw = y_.(l/b ANVyw)=V,w— VA (vaVow) ="Vyw =0, f - 1w = et wy

and
U (dw) = =" (vaVyw) = —vaVyw = =0, f - vawg = —cvawy,
so that w solves (4)). Note that, since the Dirichlet boundary condition w,,, = 0 forces ker(A) = {0}
[1, Thm. p. 445], the p-form w is necessarily the only solution to . This proves
Conversely, let w solve for some nontrivial parallel p-form wq. Up to rescaling wy we may assume

that |wg| = 1 on M. We consider the function f := (w,wp) on M. By the Bochner formula and
Vwy = 0, we have that

Af = (V*Vw,wo) = (Aw,wp) — (BPlw, w) = |wol? = 1.
0



Here, we use the fact that the Bochner operator B[P is a symmetric tensor. Also, it is immediate
to see that f|,, = 0 since wy,, = 0. Therefore, we deduce that

A(w — fwy) =wp — (Af)wo =0,

on M and (w — fwo)|oar = 0. Hence by triviality of the Dirichlet kernel, we deduce that w = f - wp
on M. In order to finish the proof, we still have to compute the normal derivative of f:

of = (Vw,wo)
= ("Vyw, "wo) + (vaVyw, viwp)
= (vadw,*wo) — (V" (dw), vowp)
= ¢(t*wo, t*wo) + c(vowo, vawp)
= cwol® =c
Here we used the identities
{ vaVw = M (*w) — 1" (bw) — SPH(vaw) + (n — 1)Hrw

FVow = d™(vaw) + vadw 4+ SPI(Fw).
stated in [20, Lem. 18]. Therefore the function f is a solution to the Serrin problem on M. This
concludes the proof of 2] and of Proposition [2.1 O

Remark 2.2 We notice that if we impose that (*wg is nowhere vanishing along the boundary, the
last boundary condition in can be dropped. Indeed, with the boundary condition vidw = ct*wg
and the explicit form w = f - wp, we compute

ct*wy = vadw = vad(fwy) = (Ou f)wo — df A (vowg) = (0u f)*wo,

from which 0, f = c along OM follows. However, the condition t*wg # 0 is not always assured.

The Serrin problem on functions is closely related to the biharmonic Steklov operator, that is the
boundary problem . Indeed, as mentioned in the introduction, on a given compact Riemannian
manifold (M"™, g) (not necessarily a domain in R™), any solution to the Serrin problem is a solution
to with ¢ = % Conversely, it was shown in [2I, Thm. 10] that the first positive eigenvalue q;
of problem is bounded from below by the first eigenvalue of the Dirichlet-to-Neumann operator
on n-forms (see Section [5| for the definition) and, when equality occurs, the corresponding eigen-
function f of is a solution to the Serrin problem. Notice here that, by [6], problem admits
a discrete spectrum that consists of a nondecreasing sequence of positive eigenvalues (g;); of finite
multiplicities.

In order to have a similar situation on differential forms, we come back to the Serrin problem
defined in for domains in R™. In fact, one can easily see that any solution to the Serrin problem
(4) gives rise to a solution to the following boundary problem

A% =0 onM
w =0 ondM (5)
viAw+ q*ow =0 on IM
UAw—quadw =0 on dM,
with ¢ = 1. The equation A%w = 0 comes from taking the Laplacian of Aw = wg and using the fact

c
that wo is a parallel form. Note here that, because of w),, = 0, the last two boundary conditions

in are actually equivalent to
Aw = ¢V, w

along OM since vadw = *Vyw and (*éw = —rviV,yw as we have seen in the proof of Proposition

2T

It is then natural to study problem for compact Riemannian manifolds with smooth boundary
that are not necessarily domains in R"™.



2.2 Biharmonic Steklov operator

In this section, we will show that the spectrum of problem is discrete and it consists entirely of
eigenvalues of finite multiplicities. We mainly follow [6].

First, note that on a compact Riemannian manifold (M™, g) with smooth boundary OM, we have
the following integration by parts, which is valid for any w,w’ € QP(M):

/ ((Aw,w’) —{w, Aw’)) dig
M
= / (<V_de, W) = (Cw, vadd) + (vow, 1w’y — (1w, V_lwl>> dpg. (6)
oM
Thus, replacing w by Aw in @, we obtain:
/ (Aw, Wy dp, = / (Aw, Aw') dpg
M M
+ / <<VJdAw, WY = (K Aw, vadw') + (voAw, 16w’y — (1F6 Aw, VJ(.U/>> dpg. (7)
oM

The main result of this section is the following;:

Theorem 2.3 Let (M™,g) be a compact Riemannian manifold with smooth boundary OM and let
v be the inward unit vector field normal to the boundary. Then the boundary problem

A2w =0 onM
w = on OM
VaAw 4+ quow = on OM

Aw —quadw =0 on dM,

on p-forms, has a discrete spectrum consisting of an unbounded monotonously nondecreasing se-
quence of positive eigenvalues of finite multiplicities (q;p)j>1-

Proof. As in [0, Eq. (1.7)], we let
Z:={we QP (M) | A%w = 0 on M and W),y =0} -

We define the following Hermitian sesquilinear forms on Z: for all w,w’ € QP(M),

(vadw, vadw') d,ug—i—/ (1" 0w, L*6w') dpsg.

W), = Aw, AN d d (w,o ::/
(w,o'),, /M< w, Aw') dpig and (w,w’) g -

M

We split the proof of Theorem [2.3] into the following lemmas.

Lemma 2.4 For w € Z, we have

/ |Aw|? dpg + / <<V_|Aw, ow) — (L Aw, V_ndw>) dpg = 0. (8)
M oM

The forms (-,-)y and (-, -)w are positive definite on Z. Moreover, there exists a positive constant C
such that ||-|lw < C-||-||lv on Z. As a consequence, if we denote by V' (resp. W) the completion of Z
w.r.t. ||-|[v (resp. |- |lw) as Hilbert spaces, then there is a natural bounded linear map I,: V- — W
extending the identity map 1dy.



Proof. To prove for w € Z, we replace ' in by w and use the fact that A%w = 0 and
t*w = vaw = 0. Since, if Aw =0 on M and wy,,, = 0, then w = 0 (see e.g. [I, Thm. p. 445], the
sesquilinear form (-,-)y is positive definite. For (-,-)y, positive definiteness is a consequence of
. In fact, if (w,w)y, =0, then vadw = 0 and ¢*dw = 0 on OM and therefore, from equation ,
Aw = 0 on M, from which w =0 on M follows again by [I, Thm. p. 445] since Wioy = 0. We now
show, as in [0, Sec. 2|, the existence of a positive constant C such that || - ||w < C - - |v on Z.
First, both || - |lv and || - | 2(ar) are equivalent on Z. To see this, we have for any w € Z

lwllv =A@y < C - [lwllm2(an)

for some constant C' depending only on M and n. On the other hand, by the elliptic estimates and
using the fact that, given any f € L?(M), there exists a unique weak solution w to the boundary
value problem Aw = f on M with w),, = 0, we have, for any w € Z that [|w||p2(ar) < C-[|Aw]|2(ar)
for some constant C, so that

Wiz < C - (1AWl 2y + wll2(ar)) < C - 1AW L2y = C - lwllv

for some positive constant that we also denote by C' and which again depends only on M and n,
see e.g. [3, Thm. 4 in Sec. 6.3]. Therefore, both || - [[v and || - ||z2(ar) are equivalent on Z. Finally,
using the fact that both d and § are first-order linear differential operators, we estimate, for any
wE Z,

loldr = lvadwlBaoan + llc0wl 3o oum

< C-wllinoan
< Ol
< C-lwlff

for some positive constant that we also denote by C, which again depends only on M and n. Here
we have also used the boundedness of the trace map T: H2(M) — H*(OM). O

Next we consider the linear operator K: V — V defined by
K = D‘_/1 o'l o Dy oIy,

where Dy : V — V' and Dy : W — W are the natural duality isomorphisms, i.e. Dy (w) := (-,w)y,
and Dy (w) := (-,w)yy, for every w in V resp. W. As usual, I1(6) := 0 o I; € V' for every § € W'.
Actually K can be defined via the identity

(Kw,o)y, = (hw, he)y, (= (w,0) )

for all w,w’ € V. By definition, the operator K is self-adjoint and positive semi-definite. We need
now to prove the following.

Lemma 2.5 The map Iy, defined in the previous lemma, is compact and injective. Therefore K is
also compact and injective.

Proof. Let I3: V — L?(OM) @ L?>(OM) be the composition of the following linear maps:

V — H2(0M)® Hz(OM) — L*0M)& L2(0M)
w — (vadw, 1*0w) — (vadw, 1*0w).

Note that I3 is well-defined since the trace operator maps H'(M) into (and onto) H 2 (OM). More-
over, since the inclusion map H 3 (OM) — L*(OM) is compact by the Rellich-Kondrachov theorem,



so is I3. Now (Z,(-,")y) = L*(0M) & L*(OM), w + (vadw, 1*0w), is a linear isometry, therefore
it extends to a linear isometry Iy: W — L2(OM) @ L?(OM) with I3 = I5 o I1. Since I3 is compact
and I» is a linear isometry, I; must be compact.

We now prove that I3 is injective, so that Iy must be injective as well. First, we show the inclusion

V C{we H*(M)N Hy(M) | A*w = 0 weakly on M},

where the concept of a weak solution is defined by the following: given f € L%(M), a weak solution
wto A%w = fon M is a form w € H>N HY(M) := H*(M) N H} (M) with

(Aw, Aw') 1oy = (£0) oy Vo' € HE (M), (9)

where Hg(M) := {w € H*(M) |w,,, = 0 and (Vw)|,,, = 0}. Note that the condition (Vw),,,, =0
can be replaced by V,w = 0 along M because of w),, = 0. Namely V' C H 2(M) already holds
because of the equivalence of ||-||y and ||| zr2(ar) on Z. Moreover V' C H} (M) holds as well because of
the continuous inclusion map H2(M) C H'(M) and the continuity of the trace operator H'(M) —
L2(OM). Thus V. C H*NH}(M). Furthermore, if w € V is given, then there exists a sequence (W )m
in Z with [|wy, —wllv — 0. Because of V C H?(M) and the equivalence of || - ||y and || - || 2 (ar)

the sequence (wp,)m goes to w in H2(M) and hence (Awp,)m goes to Aw in LQ(M) But since, as

a consequence of (7)), we have, for all m € N and o’ € {w € (M) |w),,, =0 and (Vw),,,, = 0}

0= (Awm, Aw') 12(1)

we can deduce that (Aw, Aw’) sy = 0 for all w' as above and therefore for all ' € HE(M).

This shows that w € H? N H}(M) satisfies A%w = 0 weakly on M and therefore the inclusion
is proved. Now, we come back to the injectivity of I3. Consider w € V such that I3(w) = 0,
that is vudw = 0 and (*0w = 0 in L?(OM). Then both dw and dw vanish along M because of
t*w = 0, vow = 0 and the identities [d,.*] = 0 and {6,v.} = 0. Again, because of wy, , = 0,
we have (dw),,,, = 1V’ A V,w and (0w) |y = —VaVyw, so that ¥’ AV,w = 0 and vuV,w = 0
along OM, from which V,w = 0 on M follows. This shows that w € H3(M). Taking v’ = w in
@, we deduce that Aw = 0 and therefore w = 0 on M. This shows I3 and hence I; to be injective. O

We end the proof of Theorem[2.3] Since K is compact, self-adjoint and positive definite in the Hilbert
space V, there is a countable Hilbert o.n.b. (w;);>1 of V' for which a monotonously nonincreasing
positive real sequence (u;);>1 going to 0 exists such that Kw; = p;w; for all ¢ > 1. We want to
show that, for each i > 1, the eigenform w; lies in Z and satisfies p;t*Aw; = vadw; as well as
wivaAw; = —1*éw; along OM. Hence, for each i, the form w; becomes a smooth eigenform for
problem associated with the eigenvalue ¢; , = i which is of finite multiplicity, since pu; is.

For this purpose, fix i > 1. Since w; € V, we already know that A2w; = 0 holds weakly on M
with Wi|yy, = 0. It remains to show that w; is smooth and satisfies (*Aw; = iu_:dwi as well as

viAw; = —iL*éwZ- along OM. By definition, for every w € Z,

223 (Awi’Aw)LQ(M) = M (Wiaw)v
(Kwi,w)y

= (wi,w)y
(Vadwi, vadw) r2gpp) + (£70w3, 70W) r2 9 - (10)

8



But by @, we have, still for every w € Z,

(Awi,Aw)B(M) = A%w;,w - (V_ndAwi, L*LU) + (FAw;, V_:dw)Lg(aM)
0 L2(M) 0 7 L2(0M)

— (Valw;, 10w) p2gar) + <L*5(Awi), zuw>
0 7 12(0M)

= ("Awi, vadw) 2 gary — (V2Bwi, L76W) 129 - (11)

Here we see both t*Aw; and v_Aw; as elements in H -2 (OM). Comparing and (1)), we deduce

that ) .
<L*Aw,~ — —vadw;, Vde> — (I/_IAWi + = ow;, L*éw) =0
Hi L2(OM) Hi L2(0M)

for all w € Z. Note that the map Z — QP(OM) @ QP~1(OM), w — (vadw, 1*6w) is continuous w.r.t.
|- llv and || - [|2(aar) and is injective since it is the restriction to Z of the map I3 from above. Now,
Lemma in the appendix shows that this map is onto. Hence, it follows that ¢* Aw; — iu_ndwi =0
and u_:AwiJriL*éwi = 0. Therefore, w; is an eigenform for ([5)) associated to the eigenvalue g; , = i
The smoothness of w; follows from the fact that both boundary conditions ¢*Aw; — iVdei =0

and voAw; + ib*éwi = 0 together with Wiy =0 define elliptic boundary conditions for AZ.

In order to finish the proof of Theorem [2.3] it remains to show that there is a one-to-one correspon-
dence between solutions of and eigenforms of K. We have already shown that every eigenform
w of K, associated to some eigenvalue u > 0, satisfies with ¢ = i Conversely, if ¢ € R is given
for which a nontrivial solution w to (5| exists, then by @, we have, for every w’ € Z,

(Aw, Aw') ey =4 ((ludw, vadw') Uow, ¥ 0w’ )

r2om) ( L2(aM)) )

that is, seeing both w,w’ as elements of V,
(w,w')v =gq- (w,w’)W.

Note that necessarily ¢ > 0 holds, otherwise w = 0 would follow. By definition of K, we then have
(w, ')y =q- (Kw,w'), for all ' € Z and hence in V, therefore Kw = %w. This shows w to be an

eigenform of K associated to the eigenvalue y = %. This shows the correspondence to be one-to-one.
This concludes the proof. O

In the following, we give a characterization for the first eigenvalue g; 5, on p-forms. This will be used
later in order to get estimates for the eigenvalues.

Theorem 2.6 The first eigenvalue q1,, of the boundary problem 15 characterized by

inf 18152 ar lw € QP(M) 0and Vyw £05  (12)
= in w W, =0 and Vyw
a1,p ‘|V—‘dw||%2(aM) + ||L*5w||%2(aM) ? Flon
. HWH%Q(GM)
= inf ————|we QP(M)\ {0}, Aw=0o0n M ;. (13)
HWHL2(M)

Both infima are indeed minima, is attained by an eigenform of , associated to q1p and
is attained by Aw, where w is an eigenform of , associated to qi,. Moreover, for every
w € QP(M) with wy,,, = 0, the inequality
2 2 2
a1+ (Ivdwl3qony + 100w 3aonry ) < 1AWz

holds.



Proof. As mentioned above, it follows from that, given any nonzero eigenform w associated to
a positive eigenvalue g of , we have

[ 18wPdiy=a [ vdoP dug+a [ (sl du,
M oM oM

1Awls

L2(8]\I)+” *w ”L2 (OM)
q1,p of course. More generally, for every w € V, we can write w = ), (w, w;)y, - w; because (w;); is a
Hilbert orthonormal basis of V. From this, we can express

1AWl (ap) = Il = ZI W, wi)y

so that ¢1, < for every such eigenform, with equality for w associated to

||vadw||

on the one hand, and

HV—'de%Z(aM) + ||L*5WH%2(8M) = ||w||12/V
= (Kw,w)y

IA
|
]
T
&
<

1 2
L2(M)

IA
ik
S
£

on the other hand, therefore

| Aw|)?
Gp = inf{ L2 (M) lwev\{o}}.

HV—’dw”LZ M) + ”L 6w||L2 (M)

Now, we will show that this infimum can be taken over all w € (H? N HE)(M) \ {0}, as well as
over all smooth forms vanishing and whose normal derivative does not vanish identically along OM .
Recall that,

HZ(M) = {we (H*N HH) (M) |1*6w = 0 and vadw = 0},

since, as we noticed above, if w € (H? N H})(M) is such that both (*éw and v.dw vanish along
OM, then so does V,w. As in |6, Thm. 1.2], we have the following lemma:

Lemma 2.7 The inner product (-, ")y, is well defined on (H*N H})(M) and we have the following
(v, )y -orthogonal splitting:
H>NH{(M) =V @ H3(M).

Proof. By its definition, (-,-);, is well defined on (H? N H})(M). Furthermore, already implies
that, for all (w,w') € Z x H?> N HE (M),
(w,w')v = (L*Aw, V_ndw')

— (VoAw, *ow') (14)

L2(8M) L2(0M) >’

so that (w,w’);; = 0 as soon as w' € HZ(M). This shows that HZ(M) c z+t = Vi
Conversely, let ' € V+ C H? N H}(M). Then (w;,w');, = 0 for all i. By (14)), this is equiv-

alent to (vodw;,vadw')p2gpp) + (C0wi, 0w ) 295y = 0 for all i by *Aw; = iVJ dw; and
viAw; = —%L*((Swi). Since the map Z — QP(OM) & QP~Y(OM), w — (vadw,*dw) is bounded
(wat. || - |lv and || - [[2¢9nr)), onto and the w;’s span a dense subspace of V', we obtain that

(w1, vadw’) 2 gppy = 0 as well as (w2, vadw') 125pp) = 0 for all (w1, w2) € QP(OM) & OP~1(OM) and
therefore vudw’ = 0 and ¢*§w’ = 0 hold along M. This shows that w’ € HZ(M). On the whole,

10



HZ(M) = V+ and the orthogonal splitting is proved. O

It remains to notice that, for any w € QP(M) with w),, = 0, we can split (-,-);-orthogonally
w = wy +&, where wy € V and & € HZ(M). Then

1Aw][72(ap) = lwllF = lwv i} + @]
on the one hand, and
[vadwl|Z2onry + 1670w 20nr) = vadwv 122 onry + 160wy 122001

on the other hand, so that

lAwlBay = 18wy [2ay + 1213

v

1AWy (172 (ar)

v

aup - (Ivdoy Fagonr) + 100wy |32 oan) )
= Qp- (HVJdWH%?(aM) + HL*‘SWH%Q((‘)M)) ;

which proves . Furthermore, the r.h.s. of is actually a minimum attained exactly by
those eigenforms of the biharmonic Steklov problem that are associated to the smallest positive
eigenvalue ¢ . And that same r.h.s. vanishes if and only if V,w = 0 along M as we noticed above.

We now prove the following lemma:
Lemma 2.8 The infimum in , that we denote by q’l’p, 18 a positive minimum.

Proof. To prove this result, we apply the same argument as in [6, p. 318]. Namely the standard
Rellich-Kondrachov compactness theorem ensures the natural inclusion map H 2 (OM) — L*(OM)

to be compact. Hence its transpose map L*(OM) — H _%(8M ) is compact, as a straightfor-
ward consequence. Moreover, the harmonic extension from OM to M defines a bounded lin-
ear map H 2(OM) — L*(M), see e.g. [I7, Thm. 6.6 chap. 2]. Therefore the composition

L2(OM) — H 2 (OM) — L?(M) of both maps defines a compact linear map E: L?(0M) — L*(M),
which already shows that qiﬁp to be positive using only the boundedness of the map. Furthermore,
because the image by E of the unit sphere S := {w € L*(OM), ||w||129ar) = 1} of L*(OM) is rela-
tively compact in L?(M), there exists @ € E(S) such that || 2 (ar) = sup {HEWHL?(M) |w € S}. By
definition of the closure, there exists a sequence (wy,)m in S such that Ew,, — & in L?(M). But
m—0o0
then A(Ewy,) — A& in H2(M) = (H3(M))', so that necessarily Aw = 0 holds in H~2?(M).
m—00
Note that, because A® = 0 and A(Ew,,) = 0 for all m, we can also claim that A(Ew,) — A®
m—00

in L2(M). By Garding’s inequality and since both Ew,, — @ and A(Ewy,) — A& in L2(M),
o m—0o0

m
we have that Fw,, — @ in H%(M). As a consequence, because of v Ew,, = 0 along M and
m—00
vaEBw, — va@ in L?(OM), necessarily vuo@ = 0 holds along OM. Now again Ew,, — @ in
m—o0 m—r0o0
H?(M) also implies wy, = (Bwm),,, — @,,, in L*(OM) (actually also in H'(9M)), so that
m—00
|@1pns lL2(00s) = 1. This shows that @ € E(S) and hence ||@| 12(h) = max {||Ew|| 2 |w € S}
satisfies ||| z2(ar) = L. This shows the positive r.h.s. @, of to be a minimum. O

.
q1,p

In order to finish the proof of Theorem we want to show that g1, = q'17p. Pick any eigenform
w associated to g1 p. Up to rescaling w, we may assume that Hl/_ndw”%Q(aM) + ||L*5U‘)H%2(8M) =1.

11



Let @ € QP(M) be the unique solution to Aw = 0 on M with (*@),, = —q1pvadw a well as
Viw = q1 pt* 0w along OM. By @,

0 = /(Adj,w>dug
M
= /(@,Aw>dug+qu/ (|Vde|2+|L*5w|2)dpg
M oM
= / <(2], Aw> d/"LQ + q17p7
M

so that Cauchy-Schwarz inequality leads to q1,, < [|Awl|r2(ar) - [|©| 2 (ary- Using q1p = HAwHiQ(M),
we obtain ¢, < HCDH%Q(M). Therefore,

~ 12
191122 oar) aip

~112 = 7A 2 gqup’
||w||L2(M) HWHL?(M)

from which ¢y, < g1, follows. Conversely, if w € QP(M) \ {0} satisfies Aw = 0 on M and

Hw||%2(6M) = q’17p||w||%2(M), then let @ be the solution to Aw = w on M with @, = 0. Then,

again by @, Wigpy = L'w + A (vaw) and Cauchy-Schwarz inequality, we have

lollZen = (A@,w) 12

= ((,D, Aw) + (I/_ld(;}, L*w)LQ(aM) - (L*(S(:J, I/_lw)Lz(aM)
0 L2(M)

_ ~ b n ksn
= (Vadw,w) 290 — (1/ At 5w,w>L2(6M)

= (1/_: do — 1v° A 6w, w) LaeM)

< |

vadd — 1P A L*&I)‘

2onn) Wl £2n1) -

But since (1/_1 de, v’ A L*&D)

1
2 ~ 112 A2 2
so that ”(UHLQ(M) < (HV—deHLQ(aM) + HL*&A)HLQ(aM)> : H(’UHLQ((?M)' Therefore,

L2oM) = 0, we have

) 2 2
vado — v’ AW

oM = |lvadd |22 onr) + 140172 (00r)

= Hl/_ndWHL2(aM)+ HV AL (5w‘ L2(OM)

[PN= P o125y

[V2d& e onry + 150212 o 13doZaagy + 10708 2 onn

llZay - 0l 2200nn

2o
2
HWHL2(6M)
w220
A s
from which qip > q1,p follows. On the whole, we deduce that ¢ ), = q’Lp, as we claimed. Moreover,
the p-form @ defined above, because it now minimizes q; ,, must be an eigenform of the biharmonic

Steklov operator associated to the eigenvalue ¢ ,. As a consequence, w = Aw where @ is an
eigenform of the biharmonic Steklov operator associated to the eigenvalue qi p. O
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3 Eigenvalues of the biharmonic Steklov operator

In this section, we will establish some eigenvalue estimates for the first eigenvalue of the biharmonic
Steklov operator defined in the previous section.

As before, we will consider a compact Riemannian manifold (M", g) with smooth boundary 9M.
Notice first the following fact:

Lemma 3.1 The bitharmonic Steklov operator is preserved by the Hodge star operator xp; on M.

Proof. We only need to check that the last two boundary conditions in are preserved. For this
purpose, using the equality ¢*(xpra) = x5 (voa) for any form «, we compute, for any solution w
of degree p to problem ,

vaA(xpyw) = va(xpAw)
(=1)P xon 0" (Aw)
(—1)Pq *ops (vodw)
= (—1)Pq* (xprdw)

= —qu (0% w).

In the last equality, we use the fact that *j;d = (—1)P~18%,; on p-forms. For the other boundary
condition, we have

(A sy w) = (xpAw) = *kgp (VoAw) = —q *gpr (L 0w) = (=1)Pquaxp dw = quad(xpw).
Also here we use the fact that d+y; = (—1)P %57 6 on p-forms. This finishes the proof. g

Remark 3.2 As a direct consequence of the invariance of the biharmonic Steklov operator by the
Hodge star operator is that ¢; , = ¢; n,—p for any « > 1 and p < n.

In the following, we recall the estimate stated by S. Raulot and A. Savo in [22] for subharmonic
functions that we will use in order to get a lower bound of the first eigenvalue ¢ ;. Let (M", g) be a
compact Riemannian manifold with smooth boundary such that the Ricci curvature of M satisfies
Ricps > (n— 1)K and the mean curvature of the boundary satisfies H > Hj for some real numbers
K and Hy. Let R be the inner radius of the manifold M, that is

R = max{dist(z,0M)|z € M},
and O(r) = (sh(r) — Hosk(r))" ! for all r, where the function sk is being given by
ﬁ sin(rv'K) if K >0,
r if K =0,
\/|17| sinh(ry/[K])  if K <0.

sk (r) =

It was shown in [22], Prop. 14] (see also [12, Thm. A]) that the function © is smooth and positive
on [0, R[ and O(R) = 0 when M is a geodesic ball in M, the space form of sectional curvature K.
The following result was proved in [22]:

Theorem 3.3 [22, Thm. 10] Let (M",g) be a compact Riemannian manifold with smooth bound-
ary. Assume that the Ricci curvature of M satisfies Ricyr > (n — 1)K and the mean curvature

H > Hy for some real numbers K and Hy. If h is a non-trivial, nonnegative subharmonic function
on M (i.e. Ah <0 on M), then

Joar Py S 1
- R .
S hdpg — [Fo(r)dr
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Using this result and the Bochner formula A = V*V + B on p-forms, we prove the following:

Theorem 3.4 Let (M™,g) be a compact Riemannian manifold with smooth boundary. Assume that
the Ricci curvature of M satisfies Ricyy > (n— 1)K and the mean curvature H > Hy for some real
numbers K and Hy. Assume also that the Bochner operator BP) is nonnegative for some p. Then,
the inequality

Qp = (15)

fOR O(r)dr
holds.

Proof. Applying the Bochner formula to Aw where w is a p-eigenform of the biharmonic Steklov
operator associated with ¢ p,, we get after taking the pointwise scalar product with Aw that

0 = (A2, Aw) = VAW + %A(\Awlz) + (B Aw, Aw).

Since BP! is nonnegative, we deduce that A(]Aw|?) is nonpositive or equivalently the function
h := |Aw|? is subharmonic. Therefore, by the previous theorem, we can say that

faM \Awlzdug > 1
Jor 1Aw|dpg fOR O(r)dr
Now, Characterization gives the result and finishes the proof of the theorem. O

Remark 3.5 Depending on the sign of K and Hy, we can estimate explicitly fOR O(r)dr in terms
of R and Hy, as in [22, Thms. 12 & 13]. Therefore, one can deduce several estimates for ¢;, in
terms of R and Hj.

We will now provide an estimate for the first eigenvalue of problem on manifolds carrying
parallel forms and study the limiting case of the estimate. Recall that a harmonic domain is a
compact Riemannian manifold (M",g) with smooth boundary M supporting a solution to the
Serrin problem . We have the following result:

Theorem 3.6 Let (M™,g) be a compact Riemannian manifold with smooth boundary. Assume that
M supports a non-trivial parallel p-form wqy for some p =0,...,n. Then
< Vol(OM)
Mr = "ol(M)
Moreover, if equality holds in , then f - wo is an eigenform associated to qi,, where f is
the solution of and therefore M must be a harmonic domain (and hence a Fuclidean ball if
M cR").
Conwversely, if M is a harmonic domain, then \%1(8\%) is an eigenvalue of the biharmonic Steklov

problem .

(16)

Proof. As wy is a parallel form, we can assume that |wg| = 1. By using the variational characteri-
zation , we obtain that

< ||WO||%2(3M) ~ Vol(OM)
e HWOH%Z(M) Vol(M) -

q1

If equality occurs in , then wg = Aw for some eigenform w associated with g;, by Theorem
Now Proposition implies that M carries a solution f to the Serrin problem and that
w = f-wq. To check the converse, we take a function f solution to the Serrin problem , then using
again Proposition the p-form w := f - wg is an eigenform of associated with the eigenvalue
g =1, where ¢ = M O

¢’ Vol(OM)"
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Remark 3.7 If a compact Riemannian manifold M with smooth boundary carries a nontrivial
harmonic form of constant length wq, then remains valid. Moreover, if is an equality, then
there still exists an eigenform w to the biharmonic Steklov operator on p-forms such that Aw = wy,
nevertheless it is no more true in general that M must be a harmonic domain and that w = f - wq
for some solution f to the scalar Serrin problem.

Next we compare the first eigenvalues of the biharmonic Steklov operator for successive degrees,
when the manifold M is a domain in R™ or S”. We first notice that, if f is any eigenfunction to the
scalar biharmonic Steklov problem , then for any parallel p-form wg on M the form f - wg is an
eigenform to the biharmonic Steklov problems on p-forms and associated to the same eigenvalue.
Therefore, for every eigenvalue q of the scalar biharmonic Steklov operator, we have an embedding

ker(BSg — q¢) ® P, = ker(BS, — q),

where ker(BS; — ¢) denotes the eigenspace for the biharmonic Steklov operator on j-forms and
associated to the eigenvalue ¢, and P, denotes the space of parallel p-forms on M. When M C R",
then conversely for any w € ker(BS, — ¢), there exists a parallel p-form wy on M with |wy| =1 and
(w,wp) # 0 (non identically vanishing) on M. But then f can be easily shown to lie in ker(BSy — q).
This shows that, when M C R™, both 0- and p-biharmonic Steklov eigenvalues coincide, their
multiplicities being ignored.

In what follows, we assume that (M™, g) is isometrically immersed into the Euclidean space R,
For any given smooth normal vector field N to M, we denote by Il the associated Weingarten
map, that is, the endomorphism field of T'M defined by

(IIN(X),Y) =(N,II(X,Y))

for all X,Y tangent to M, where II is the second fundamental form of the immersion. Recall that
any endomorphism A of TM can be extended to the set of differential p-forms on M as follows:
For any p-form w on M, we define

A[p]w(Xla to aXp) = ZW(XD o 7A(Xl)a o >XP)7 (17)
i=1
for all Xy,---,X, vector fields in T'M. In particular, this applies to Il for all N € T+M. The
following lemma is technical but will be useful for the comparison.

Lemma 3.8 Let (M™,g) be a compact Riemannian manifold with smooth boundary OM. Assume
that M is isometrically immersed into the Euclidean space R"™™. Let w be any p-eigenform of the
biharmonic Steklov operator. Then we have

n+m

pql,,,_l/ (vadol? + |1 (86)|?)dptg < Z/ =201, (07 )+ 23 11y, (07 )11
oM i=1 7'M a=1

~23 Iy e5) (Vo) — (d(<f{r, - >)) w4 07 Aw|2dpy.
s=1

(18)
Here {e1, - ,en} and {f1,-+ , fm} are respectively orthonormal bases of TM and T+M and H is

the mean curvature field of the immersion.

Proof. Let w be any eigenform of the biharmonic Steklov problem associated with ¢ ,. For each
i = 1,--- ,n + m, the unit parallel vector field d,, on R™™ splits into d;, = (0x,)7 + (9u,)*

7
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where (0,)7 is the tangent part in TM and (9,,)" is the orthogonal one in 7M. We consider
the (p — 1)-form (9,,)" sw on M which clearly vanishes on M. By applying to it the variational
characterization , we get, for each 1,

q1.p-1 /8M (172d((92,)" 2) | + 10%6((0a, )T sw)I?) dprg < /M A((8z,)" w)Pdpag. (19)

Now we want to sum over ¢ = 1,--- ., n+m. We first begin with the L.h.s. Recall the Cartan formula:
Lxw = d(X w) + X sdw, for any vector field X on M. Using this formula, we have for each i,

d(of w) = L'axT_w—('?T,de

T

= VaT w+ H[pi w— 851__ndw. (20)

In the last equality, we used the splitting of the Lie derivative in terms of the connection as follows:
Lyrw =V yrw —|—II)[]()]Lw, for a parallel vector field X € R™"™ proved in [9, Eq. (4.3) p. 337]. Since
w =0 on OM, we have that for any X € TOM [20, Eq. (23)]

voVxw = V_(?(M(VJQJ) + S(X)J(L*W) =0.
Here S denotes the second fundamental form of the boundary. Therefore, we deduce that

vad((0x,)" w) = vaVarw+ 0F 2(vadw)
= g((axi)T, v)vaVyw + 8%;_1(V_:dw)
= —g(Op;, V)" (dw) + 8£J(V4dw). (21)

In the last equality, we use the identity [20, Lem. 18]
voVw = "M (Fw) — ¥ (6w) — SP U (vaw) 4+ (n — 1) Hyow = —1* (bw).

Independently, by a straightforward computation, we check that, for any p-form «,

n+m n

Z (9T 8T L) Z ei N (ejoa) = pa.

=1
As a consequence, we obtain for any p-forms « and 8 on M
n+m
> (0F 20, 0F1B) = pla, B). (22)
i=1

We take the norm of and sum over % to get

n+m n+m

S ad(@)T )P W)+ pladef? ~ 23 (B, v) (07 (8w), O 2(vadw))
=1

=1

|*0w|? + plvadw|? — 2(0* 6w, vT J(vadw))
= [1*0wl]? + plvodw|?. (23)

Here we notice that by the GauB formula and the fact that 9, is parallel in R"*™ we have
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Vx0i = H@zi (X), so that

S(OLw) = = ejaVe, (0] w)

Jj=1

= — Z ej (Ve]agi_nw + c’)fl_J VejW)

j=1
n n
= =) ejully(ej)aw+ Y 0 1 (ejaVew)
j=1 ' =1
n
= - Z <Ifaz; (ej), €k>€j—1 CplW — 8{2,4 dw
gk=1
= -5 Jow

because of the expression (IIy1 (e;), ex) = (I (e, ex), ;) being symmetric in j, k. Thus 6(9% _w) =
—0% 10w for any i. Using also the fact that v 6(0F, _w) = —6M (v, 0T Jw) = 0, we get that

n+m n+m

S 1607w Z 1507 )2 @ (p - 1)]176w]?. (24)
=1

Hence adding Equations and allows to find the 1.h.s. of Inequality . We are now going
n+m

to estimate the term Z |A(8£ 4w)[? in (19). Taking the divergence of and the differential of
i=1

the identity ¢ (6;2 w) = —6;2_ 6w along with the Cartan formula and the decomposition of the Lie

derivative as in , we get that

ABT sw) = [6,Vor (@) + §(IIF w) — I (0w) + 07, sAw. (25)

In the following, we will compute each term of separately. First, take an orthonormal frame
{e1, -+ ,en} of TM such that Ve; = 0 at some point. Then we have, for any vector field X on M,

[0, Vx](w) = 6(Vxw)— Vxiw

= —ZeszestW — Vxéw

s=1
= —Zes_n (es, X w+VXVeSw+V[e X]w) V x 0w

n

= — Z esaR(es, X)w + Vxow — Z esaVy, xw — Vxiw
= s=1

= — Z esaR(es, X )w — Z esaVy,, xw. (26)
s=1

s=1

Now we use the fact that for any tensor field A, any vector field X and any p-form « on M,
Vx AP = (Vx APl and AP-Y(X.a) = X, APla — A(X).a, which both can be proved by a
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straightforward computation. Thus for any N € T+ M, we can write

S(IPw) — I New) = = eaVe, (Iw) — I (6w)
s=1

_ _ZesJ (Ve I P (w Ze LBV, w) — T2 (6w)

n

S Z(VGSIIN)[]’_”(@S_W) N (Ve dIn)(es)ow — Y IE NesaVe,w)
s=1

s=1

—Z (ITyes)o(Ve,w) — TH Y (5w)

n

= — Z (Ve IN)P~(esw) + 6(In)ow — > (Iyes)o(Ve,w). (27)

s=1

By taking X = Bgi in and N = 8;;1, in , Equation reduces after using the fact that
V&ETZ, = Il51 as a consequence of the parallelism of the vector field d,,, to

A(Of,w) = = esaR(es,00)w—2Y (ITy1 e5)s(Ve,w)
s=1 s=1 ‘
— Z (Ve IIaJ_ ](es_lw) + (5(]]31_ )w + 6 _lAw (28)

We proceed in the computation of (28)). Let us compute the term Y 7 (V, Iy )P=1 (e, w). Using

the fact that AlP) = Yoo A (A(er)a) for any symmetric tensor A, we compute with the help of
Equation in the appendix

n n

S (Ve dp P e o) = 3 ern ((vesn%)(emesw)
s=1 l,s=1
= Z e N <(VelIIach-i)(€s)—les—lw) — Z WA <II(V]§;L+m8;)l)(65)_165_100)
l,s=1 l,s=1 !
+ Z e A (ﬂ(vwm o1yt )(el)Jest) . (29)
l,s=1

The first two sums vanish identically, since ) A(es)oes0w = 0 for any symmetric endomorphism
A. Hence with the help of Equation , Equality reduces to

n

Z(Vesﬂaé)h?—l](es_,w) = — Z er N (IIII(eS,BQE)(el)—'QS—'W>

s=1 l,s=1
n m
= - Z Z (I(es, 0y,), fayer N (I, (e)sesw)
l,s=1a=1
n m
= "N e n (U, (er)odly, (D ZII[p (I, (3T) w)
=1 a=1
(30)
where {f1,---, fm} is an orthonormal frame of T M. In the last equality, we used again the
expression AP = Y€ N (A(ey)a) for any symmetric endomorphism A. Hence after replacing
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Equations , proved in the appendix, and into Equation , we finally get
AL w) = - ZeSJR es, 0L Jw — 22 My e5)3(Ve,w)

Zﬂp Uy, (0 (Z 1% (01 — nd((H,0%)) — nll (%, )) w4+ 0F JAw

a=1

= —Zes_nR (€s, 0z, )w — 22 HBL es)4(Ve,w)

s=1

+ Z 17, (00 oM P + (=nd((H,05)) = nll5(0F) ) w + O A

— I, (07w + Z 4, (98) sl P — 2 Z [Ty e5)5(Ve,w)
s=1

+2Uf Ty + (_nd(@,a@)—nﬂ (&T ))me L Aw

= 20T (07)w +2 Zﬂfa (02) oI — 2 Z Iy €5) AVe,w) = n(d((H,0;,))) w
a=1
+0T JAw. (31)

In the second equality, we used again the relation AP~1(X_.a) = X APa — A(X)La for any p-form
a and X € TM, and in the third equality, we used Proposition in the appendix. Equation ,
O

along with and , gives the result, by using Inequality .

In general, it is difficult to control all the terms in Inequality in order to compare ¢ 1 and
q1,p- Therefore, we shall restrict ourselves to the case when M is a domain in S". We have the
following result:

Theorem 3.9 Let (M",g) be a compact Riemannian manifold with smooth boundary. If M is a
domain in S™, then we have that

Pa1p-1+ (N —D)q1pr1 < Cpnqip, (32)

where Cp, ,, is some constant that depends on p and n and whose explicit expression is given in .

Proof. We consider the isometric immersion M C S™ < R™*!. In this case, we have that m = 1, the

orthonormal basis of T~ M reduces to the inward unit vector field 7 = — Z?+11 x;0y,, the second

fundamental form is given by II; = Id and H=1. Therefore, Inequality ([18]) becomes

o / (odw]? + 0% (60)|2)dpry <
oM

n+1 9
Z/ ‘2}) 2n)97% 1w + 2(0y., V)ow — nd((, 0y, )) 2w + 02 sAw| dpg.

Now, an elementary computation shows that d((7,85)) = —07I . Therefore, the above inequality
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reduces to

n+1
DY1p—1 / (Jvodw|? + |o* (6w) ) dpy < Z / |(2p — n)ang + 2(8;, v)w + 3£4Aw]2dug
oM = M

— [ (0= )l + 48l + Al
M
+2p(2p — n){w, Aw))d,ug
= [ el + ple + (20 = )y (33)
M

Here, we use Identity and that

n+1 n+1
D (05, D) (0F, w, 6w) = > (Or;, D)0, w, 6w) = (77w, bw) = 0.

i=1 i=1

The same argument applies to > 7 (07, 7) (6w, O JAw) = 0. Since Inequality is true for any
p-eigenform w, we apply it to the (n — p)-eigenform *p;w to get

(n=p)q1n—p-1 /E’M(!b*(M)PJr |vadw|?)dpg < /M(4!du)\2+(n—p)\Aer(2n—2p—n)WI2)d/~Lg- (34)
Summing inequalities and and using the fact that g1 ,—p—1 = q1p+1 yield the following:

(Pa1p1 + (0 — D)) /a (s + 107G )y

IN

/ (4\dw[2 + 4|5w|2 + plAw + (2p — n)w|2 + (n—p)|Aw+ (n — 2p)w|2)dug

M

= / (4(Aw,w) + p|Aw + (2p — n)w|* + (n — p)|Aw + (n — 2p)w[*)dpg. (35)
M

Here, we used the fact that [, (Aw,w)dug = [, (Jdw|*+|éw|?)dpug as a consequence of the boundary

condition wy,, = 0. Now, the Bochner formula applied to the eigenform w, with the help of the
1
n—p+1

pointwise inequality |Va|? > ﬁ|da|2 + |6ce|? which is true for any p-form « [7, Lemme 6.8],

gives that

1
/(Aw,w)dug _ / Vw|2d,ug+/ A(\w[Q)dug—i—/ (B, o)y,
M M 2 /m M

1
> (dof? + 16)dty + [ (Tusordiy + [ pln = ey
Ma(p,n) OM M

= ! w,w n — UJ2
= o [ e+ [ =),

Here, we have set a(p,n) = max(p+ 1,n — p+ 1) and used the fact that the Bochner operator B!
is equal to p(n — p)Id on the round sphere S”, see e.g. [7, Cor. 2.6] and [7, Rem. 6.15]. Thus, we
deduce that

1 1
— 2 <(1- /A dus < [1——— ] ||A
b=l < (1= 20— [ @l < (1= o Y Iawlsnllellaan,
so that
a‘<p7n)_1

mHAWHL?(M)' (36)

lwll2(ar) <
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Coming back to Inequality and using again the Cauchy-Schwarz inequality as well as the
estimate ||a + ﬁ||%2(M) < 2(||a||%2(M) + HBH%Q(M)), we obtain

(Pg1p-1 + (0 — P)g1p11) AM<|quw\2+|L*<aw>|2>dug < 4Awllpzan @l 2o + 201 A0l

+2p(2p — n)?[|wlF2ar) + 2(n = D) Aw[2a)
+2(n = p)(n = 2p)*||wl72(ar)

ED)
< Clo.n)|AwllFa(a).

where C'(p,n) is the constant given by

_ a(p,n) —1 n —n)? n—)(n — 2p)2 alp,n) =1 5
Clp,n) = 4p(n —papm) T (2p(2p — n)" +2(n — p)(n — 2p) ))(p—(n —p)a(p,n))
= 4—a(p, n)—1 + 2n + 2n(2p — n)*( alp.n) — 1 )2, (37)

p(n —p)a(p,n) p(n —p)a(p,n)

Finally Characterization allows to get the result. Notice that, if were an equality, then
by the limiting case in the Cauchy-Schwarz inequality, the form Aw would be parallel to w. But
by A%w = 0, this would imply that Aw = 0. Because of Wiyy = 0, we would deduce from [1] that
w =0 on M, which is a contradiction. Therefore, always remains strict. O

4 Robin vs. Dirichlet and Neumann eigenvalue problems

In this section, we will establish estimates for the Robin eigenvalue problem on differential forms
defined in [4]. We mainly generalize some results in [13] to differential forms. For this purpose, we
recall the Robin problem on forms. Let (M", g) be a compact Riemannian manifold with smooth
boundary M. Fix a positive real number 7. Then the boundary value problem [4]

Aw = w onM
Fvodw—Tw) =0 on OM (38)
Vaw =0 on OM

is elliptic and self-adjoint. It admits an increasing unbounded sequence of positive real eigenvalues
with finite multiplicities
ALp(T) < Agp(T) < -

The first eigenvalue A; ,(7) of the Robin boundary problem can be characterized as follows:
/ (|dw|? + |0w|?) dpg + T/ |lo*w|?dpg
M oM

| P,
M

where w runs over all non-identically vanishing p-forms on M such that vow = 0. When the
parameter 7 tends to 0, the Robin problem reduces to the Neumann boundary problem, that
is

A p(T) = inf (39)

Aw =X v onM
vaidw =0 on OM (40)
vow =0 on OM.

Notice that the first eigenvalue )\{\fp of is nonnegative and the kernel of the operator is
isomorphic to the so-called absolute de Rham cohomology, which is defined by

HY (M) ={w e Q"(M)| dw=6w=0o0n M and viw =0 on OM}.
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When 7 — 00, the Robin problem reduces to the Dirichlet boundary problem

{Aw =l onM (41)

w =0 on OM.
By [, the first eigenvalue /\fp of problem is positive. We also have the estimate [4, Prop. 5.4]
AY, < Ap(r) < AL,

In the following, we will establish another estimates for Aj,(7) in terms of the Neumann and
Dirichlet ones. We have:

Theorem 4.1 Let (M™,g) be a compact Riemannian manifold with smooth boundary. We have
the following estimates for the first eigenvalue of the Robin boundary problem:

1. Assume that the absolute de Rham cohomology H" (M) does not vanish. We denote by wp an

eigenform of the Dirichlet boundary problem associated to )‘?,p and let wy be the orthogonal

projection of wp on the space HZ(M), assumed to be nonzero. Then

1 1 ”WOH%%M)

Mp(T) T AL, TllwollZaonry

2. Assume that the first eigenvalue )\{\fp of the Neumann boundary problem is positive, then

1 > R TO‘N()‘EP — )‘{\jp)
Aip(T) AJI\,TP A{YP(TQNAEP + )‘Jl\fp()‘gp - )‘{Yp))
2
lonlZ2 o) o ‘
where ay = ———=——— and wy s being an eigenform of the Neumann boundary problem
HwNHL2(M)

associated to A\ -

Proof. We begin with the proof of the first point. Let wp be a p-eigenform associated to the first
eigenvalue )\fp that is assumed to be of L?-norm equal to 1. Let wy be the orthogonal projection
of wp to HZ(M). For any real number ¢, we consider the p-form

Wt = WwWp —l—two.

Clearly, we have that viw; = 0. Therefore, by the characterization of the first eigenvalue A ,(7),
we have that

/(!dwt|2+|5wt]2)d,ug+7'/ lwr|2dg
M oM )

/ ‘thdﬂg
M

D
||dth2L2(M) + H(Swt”%?(M) = AMps ||wt”%2(aM) = tQHWUH%?(@M)‘

Al,p(T) <

By the definition of the form wg, we have that

Also, we have that
2 2 2 2
”Wth(M) =1+t HWOHL?(M) + 2t||w0”L2(M)'
The last term comes from the fact that wqg is the orthogonal projection of wp. Thus by plugging in
the above inequality, we get that

ADp + 7 llwollZ2 o)

)\1’ (7’) S .
P 1+t2||W0||%2(M) +2t”WOH%2(M)
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7527”“’0”%2(8M) )

Now, we take the inverse of this last inequality, then add and subtract the term D in
Lp
the numerator to find that
7|lwol|72
2 2 (oM) 2
. . t (HWOHL?(M) - ?Dp +2t||W0”L2(M)
>z —5 + :
Ap(T) )‘fp /\Ep + tQTHWOH%Q(BM)
1
Since this is true for any real number ¢, then we deduce that ———~ > —5- + sup(f) where f is
the function given by
7'HW0||%2(3M)
2 NwollZopy — ——p— | + 2tllwoll?
flt) = ( D /\EP L) _ At? + Bt
Afp+t27||w0|’%2(8M) Ct2+ D
with
Tllwoll 22 (o0
A= llwollF2eary — )\{3(): B = 2||woll 22 (ar)
’p
C= THWOH%%aM)y D= )‘fp'
AD A2D? + B2CD
It is easy to check that the supremum of f is attained at ty = v BC i which is
equal to
B%*C
2
sup f = Flto) = to(Ato+B)  to(Aty+B) Bty A+ A+
o - 2 T 2ADt - o ’
R Cty+D O p4D 2D 2C
Now, by replacing A, B,C and D by their values, we estimate
2
9 B2C 9 T||w0”%2(aM) 4”‘*‘)0”%2(1\4)7'”0%"%2(31\/[)
A°+ D = HWOHLQ(M) - T + )\le

2

7'””0”%2(3]\/[)

= (”L‘JOH%Q(M) Y 20lwollzecary | — 4llwollzecar + 4llwollGz(ary
Lp

2
7'||w0”%2(aM)
leollZ2ary — =5 — 2llwollz2ar) |
)‘1,10

since HWOH%%M) < ||WD||%2(M) = 1. Then

Tllwoll32oar
(HWOH%Q(M) - % +
Lp

27'”“0”%2(31\4)

Y

7lwoll7
2 . (oM) 4
HWOHL2(M) )\{)p 2||w0||L2(M)

sup f >
R

HW0||%2(M)

THWOH%;(@M) .

This shows the required estimate. To prove the second inequality, let wp (resp. wy) an eigen-
form of the Dirichlet (resp. Neumann) boundary problem associated to )\fp (resp. )\ffp) such
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that [lwplz2ary = llwnllz2(ny = 1. For any nonnegative number s, we consider the p-form
ws = Swp + wy, which clearly satisfies vaws; = 0. In order to use the Rayleigh inequality for
the eigenvalue A1 ,(7), we compute

[ o+ 6wy = 52 [ (dwonl + 18Py + [ (donl? + (8w
M M M

+2s/ (dwp, dwn)dpg + 28/ (0wp, dwn ) dpg
M M
= SQAfp + )\Jl\fp + QSA{Yp(wD, WN) L2(M)-
In the last equality, we use the Stokes formula. Also, we have
HWSH%Z((’)M) = ||WN”2L2(3M) and ||wsH%2(M) =5+ 1+ 2s(wp, wN) L2 (ar)-
Therefore, after replacing we get that

szx\fp + )\{\fp + 28A]1Yp(wp,wN)L2(M) + T||wN||%2(8M)

A\ <
1p(7) < 52 4+ 14 2s(wp, wN) r2(ar)

As we did before, we take the inverse of this last inequality, then add and subtract the term
52)\5p+7||w\|2

¥ L2(OM) i) the numerator to get that
1p

)\D
1 S 1 )‘JIYp )‘{\jp

Mp(T) — rj\fp sQAfp + )\Jl\fp + 25)\11\;0 +Tan

Here, we also use the fact that |(wp,wn)r2(an| < 1 by the Cauchy-Schwarz inequality and the fact
that s > 0. In order to get the lower bound, we need to compute the supremum of the function g
which is given by

As?’+ B
9) = ==
Cs?+Ds+F
with
A Tay
A=1-=2 B=-—+-,
Al A
C=xP,, D=2\, E=M,+ran.
A direct computation shows that the supremum of the function ¢ is attained at s5 = %
Lp— “Lp
and thus (AP N
supg(g) = g(s2) = — ’ i -
A{\ZP(TO[N)\EP + )‘Zl\fp(/\fp - )‘]1\,[19))
This finishes the proof of the theorem. O

In the following result, we will give a gap inequality between the eigenvalues of the Robin Laplacian
under some curvature conditions. Let (M", g) be a Riemannian manifold with smooth boundary
and let n(z),n2(x), -+ ,Mp—1(x) be the principal curvatures at a point x of the boundary (i.e.
eigenvalues of the second fundamental form of the Weingarten tensor S). We assume that n;(z) <
n(x) < -+ < ny_i1(zx). For any integer p € {1,--- ,n — 1}, the p-curvatures o,(x) are defined as
op(z) =m(z)+ -+ np(z). One can easily check that for any integer p and ¢ with p < ¢, we have
that U"T(x) < U‘ZT(QC) with equality if and only if 1 (z) = n2(z) = --- = n¢(x). Hence, we deduce that
)

H > % for any integer p € {1,--- ,n — 1}. In the next theorem, we set

o=, 700

We state the result which generalizes [4, Thm. 5.8].
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Theorem 4.2 Let M be a compact domain in R™. Fiz an integer number g € {1,--- ,n — 1} and
Let w be a g-eigenform of the Robin Laplacian. If o, > 0 for some p < q, then we have

leony 1
HWHZ = ;()‘l,q - Al,q—p)-
L2(M) p

Proof. We mainly follow the same computations as in [4, Thm. 5.8]. Let w be a g-eigenform of
the Robin Laplacian and, for any p < ¢, consider the (¢ — p) form ¢;, ... i = 8% J@xl _w, for
ip=1,--- ,nwithk =1,---,p. Clearly, we have that v.¢;, .. ;, = 0. Hence by the characterlzatlon
(B9) of the first eigenvalue, we get that

Al,q—p(T)/ i, iy | g < / ([dis iy | + 100 | * g + T/ |Gir,ip P dptg. (42)
M M oM
Next we sum over i1, --- ,4,. We begin with the Lh.s. Applying successively , we have

S Wl = S (00t sl

i1, ip i1, ip
q!
= (a- - 1) ol = el (43)
For the r.h.s., we first compute
2 (¢—1)
S 0 = S yamilj-uazipﬁwy?:(_l_)ya w2, (44)

i1, ip Q1,0 ip

In order to compute the term Z“ i |diy . i, |2, we proceed as in Equation . Using repeatedly
the identity d(X o) = Vxa — X ida, true for any parallel vector field X, we get

p
dei, ... ip = (—1)1)8;,%1 g -_lamip adw + Z(—l)l—’_l@xil A aOgy 2202y "Vawilw'
=1

Thus, we find that the sum Zil iy |di, ... 7ip|2 is equal to

p
Z |ax2.1J--'_| xip_ld(.U|2+ Z |Z(_1)l+1aﬂﬁi1—‘"'4 IR xipJVamile

i1, i iy U=1

l+1 —
E E x” © a0, adw, 8% de 10y a0y _:Vaxil w)

i1, ,0p =1

g+ 1) — —
(q(+ 1= Z Z O -Jazil d-- -Jdcip JV@Iilw, 3Ii1 Jr A0y A zipJvaz”w)

l+s _—
—2 E E Oy, -+ -Jaxiﬂ a0, _:Vaxilw, 3;,;1.1 A a0 a0y _:Vaxis w)

I§

17
i1, 40p I<s

—2 Z Z COREE -7:1 ﬁml (6% de),axil_l”u xilJ‘~-_18xip_|VaZilw>

11, ,0p =1

(g +1)! 2 pq! 2
= MU gps Ly
i T =iV
!
-2 Z Zq—l (p—3))-- (q—1)<8xisJVazilw,axil_JValisw>—QL]de.

(g—p+1)!

11, ,ip 1<s

25



In this lenghty computation, we used the fact that ),(0s, 2, 05, 16) = p{a, B) for any p-forms o
and 3. We also make use of the formula d =}, 0, AV, . Now, one can easily check by using the
expression of d and V that the sum term in the above equality is equal to

Z Z<axis JV@%lw,axilJVazi w> = (g) (|Vw\2 - ‘dw’Q).
11, ,ip I<s
Hence, after simplifying, we find that

p(qg — 1)!

i1, ,lp

Plugging Equalities , and into Inequality yields after simplifying by gg:;gi

Mum?. (45)

Mamsla [ oPdny < v [ Vel +(a=p) [ (dof + 16
M M M
+7’q/ |w|?dpg. (46)
oM
Now the Bochner formula A = V*V + 8Bl4 applied to the form w gives after integrating that
M) [y = [ (Bw )ity = [ VPl + [ (Tuo)dp,
M M M oM
By using (V,w,w) = (Sl4(1*w), 1*w) + 7|w|? as proved in [9], we get that
9Py =ar) [ folPdig ~ [ ((S90),w) + 7l
M M oM

Plugging this last equality into Inequality , we get after using the pointwise inequality
(Sl (1*w), 1*w) > o4|w|? that

Mgn(7)1 / Wiy < pAig(r) / w2y — p / (0q + 1)l dpg
M M oM
(a—-p) (Al,qm | tbdny = [ |w\2dug)+m |l
M oM oM

= ag(r) / (w[duy — pog / w[2dug
M oM

< q/\l,q(T)/ |w|2dﬂg_q0'p/ |W|2dﬂg'
M oM

In the last inequality, we used the fact that % < %. This finishes the proof of the theorem. O

5 Robin and Steklov operators vs. biharmonic Steklov

In this section, we relate the eigenvalues of the Robin problem to those of the biharmonic Steklov
operator. This extends the result stated in [I3, Thm. 1.17] for functions.

Theorem 5.1 Let (M™,g) be a compact Riemannian manifold with smooth boundary. We have

for any T > 0 the estimate
1 1 n 1
Mp(T) = A, Tay

where Afp 1s the first eigenvalue of the Dirichlet boundary problem .
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Proof. We mainly follow the computations done in [13, Thm. 1.17]. Let w be an eigenform of the
Robin boundary problem associated to A1 ,(7). We denote by w; a solution to the problem

Aw; =0 on M
wp =t'w  on OM (47)
vaowp =0 on OM.

Notice that such a problem admits a unique solution by [24]. Now, let us consider the p-form
wo := w — wi. It clearly satisfies

{Awg =Aw onM (48)

wo =0 on OM.

D

By using the triangle inequality, the characterization and the one of the first eigenvalue Ay,

of the Dirichlet problem (corresponding to 7 — oo in (39)), we have

lwllczary < llwtllzzaary + llwzllz2an

IN

1
arpllwtll2@nny + /(A2 <||dw2H%2(M) + ||5W2H%2(1\4))2

IN

1
4 Sl zzonny + /0P~ (IdwlBaqan + 109]320)) (49)
Indeed, [|w1llz20nr) = lwllz2(anr) since wa = 0 on M and
ldol oy + 10wl F20ry = dwillFaqary + lldwallF2(pp + 2(dwr, dw2) 2y

6w ll72ary + 18w 200y + 26w, 6w2) p2(ar)

= ”dWIH%%M) + ”(SWIH%Z(M) + ||dW2H%2(M) + |’5W2H%2(M)
+2/ <6dw1,w2)dug—2/ (vawr, wa)dpg
M oM

+2/ <d5w1,w2)dug+2/ (L" 6w, vaws)dpyg

M oM

= lldwillZ2(ary + 1001 2(ar) + ldw2llFacary + l8w2l72(ar)
> |ldwall72(pp) + 6w2lZ2(ar)-

Now, we square both sides of Inequality to write

lolZeny < amplolann + 00 (ldwlZaqan + 6wz )

1
2

+2 (g3 OL) Mol aonny (I1dlZqan, + I6wl32r)) )
a1l agonn) + OF,) ™ (w3 + 1wl ar)
a1, (Hde%?(M) + ”50}”%2(1\4)) + 7)ol oan

= (T, + (M) (IIde%g(M) + [10w[IF2 gy + T||w”i2(aM>> '

IN

In the second above inequality, we use the fact that 2v/ab < 2 + 7b for any real positive 7. The
characterization allows to deduce the estimate. U

Now, we come back to the Serrin problem on forms. We will use the existence of solution to this
problem in harmonic domains carrying parallel forms to get an estimate for the eigenvalues of the
absolute Dirichlet-to-Neumann operator introduced in [21] (see also [I1]). Recall the definition of
this operator. Let (M™,g) be a compact Riemannian manifold with smooth boundary M. Let
p €40,--- ,n—1}. Given any p-form w on OM, there exists a unique p-form & on M such that [24]
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Ao =0 onM
o =w ondM (50)
vaw =0 on dM.

The form @ is usually called the harmonic tangential extension of w. The Dirichlet-to-Neumann
operator is then defined as T : AP(OM) — AP(OM), w — —vdd. When p = 0, this operator
reduces to the classical Dirichlet-to-Neumann operator on functions, known as Steklov operator.
It is shown in [2I] that T is an elliptic self-adjoint pseudo-differential operator with discrete
spectrum consisting of eigenvalues

0 <wip(M) <wop(M)<--

The kernel of this operator is isomorphic to the absolute de Rham cohomology H% (M) introduced
in Section The dual problem to (50) (w.r.t. the Hodge star operator) is called the relative

Dirichlet-to-Neumann operator and is defined by Tg] = (=1)P=1=2) yeg0 TPl TF Vf)p(M )

is the first eigenvalue of T[p]7 we have
VP (M) = 11 1-p(M).

Also, we have the following characterization [22] for the first eigenvalue 1/1D7p(M )

/ (1|2 + 15612 dpg
M

/ 6Pdug
oM

Theorem 5.2 Let (M™,g) be a compact Riemannian manifold with smooth boundary. Assume that
M is a harmonic domain and carries a parallel p-form for somep =1,--- ,n—1. If moreover o, > 0
or op—p >0, then

vP (M) = inf

» | g € PTHM),'p=07. (51)

min(vy p—1 (M), V1 p—1-p(M)) < \m.

Proof. Let w be any p-eigenform of the biharmonic Steklov operator associated to some eigenvalue,
say q. We let the (p 4+ 1)-form ¢ := dw. Clearly, we have that :*¢ = 0. Hence, by Characterization

, we get that
pr(M) /BM lvadw|*du, < /M |6dw|*dpay. (52)

Now, applying the same characterization to d(xpw), since *pw is also an eigenform of the
biharmonic Steklov operator, yields the inequality

By O0) [ NSl < [ |dbldp, (53)
oM M
Summing Inequalities and yields
win(uF, (M), v (M) [ (oo |6y < [ (15f? + 5y
oM M
Now a direct computation using the Stokes formula and the boundary conditions on w gives that
2
/ |AwPPpy — / (|dsw]? + |3deo|2)dpry — 2/ (v, 67 (1 Ay
M M q= Jom
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Hence after plugging this equality into the above inequality, we deduce that

5 / (voAw, 58M(L*Aw)>dﬂg
min(vP,(M),vD, (M) < g+ 5220 '
' / (lvadwl® + % 6w[*)dpg
oM

(54)

Notice that this inequality is true for any eigenform w of the biharmonic Steklov operator. From

Theorem (3.6)), we know that when M is a harmonic domain carrying a parallel p-form wy, the

form w = f - wp is an eigenform associated to the eigenvalue ¢ = \%1(8\%) Hence, we will apply

Inequality to the particular form w = f - wqy. For this purpose, we will check the sign of the
integral. Assume first that o,_, > 0. We estimate

/ <y_|Aw,5aM(L*Aw)>dug = / <l/_lw075aM(L*W0)>dllg
oM

= / v_wo, (SP~H — (n — 1) H)vawo))dp,
oM

IN

((op—1— Onp)|vawol* — an,1|1/_|w0|2) diig
oM
< 0.

In the second equality, we use the identity [20, Lem. 18]
6M (1*wg) = vaVwo + v (wo) + SP U (vwe) — (n — 1) Hy wp.

Also, we use the pointwise estimate (SPla, @) < (0,-1 — 0y—p—1)|a|? for any p-form o. Hence, we
deduce that Vol(9 M)
. D D o
min(vy, (M), vi,,_,(M)) < Nol(M)
Finally, the fact that pr(M) = Vin—1-p(M) and yfn_p(M) = 1 p—1(M) finishes the proof of the
statement when o,_, > 0. If 0, > 0, then replacing p by n — p and by invariance of parallel forms
under the Hodge star operator on M, we obtain the same inequality. This concludes the proof. [J

Remark 5.3 Notice that a similar estimate has been established in [21, Cor. 15] for compact
manifolds carrying parallel forms with the assumption H% (M) = HP(M) = 0. The inequality is

Vol(0M)
Vin—1-p(M) +v1p1(M) < Nol(M)

6 Appendix

Lemma 6.1 Let (M",g) be a compact Riemannian manifold with smooth boundary OM and let
v be the inward unit normal vector field to the boundary. Consider the following boundary value
problem
A = f on M
Biw =w; ondM
Bow =wy onoM
Bsw =ws ondM

(55)

Jor given f € QP(M), wy € D(APT*M,, ), wp € QP (OM) and w3 € QP(OM) and where if By :=
APT*M,,,,, Ea := AP71T*OM and E3 := APT*OM, By: Q°(M) — T'(E1) such that Biw := wy,,,,
By: QP(M) — I'(E2) and Bs: QP(M) — I'(Es3) are either:
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1. By = t*6w and B3 = vidw. In this case, is elliptic in the sense of Lopatinskii-Shapiro
(see Definition 1.6.1 in [2])]), self-adjoint and its kernel is reduced to {0}. Or

2. Bow = viAw + qu*(0w) and Bsw = *Aw — quidw for some real constant q. In this case,
problem is elliptic in the sense of Lopatinskii-Shapiro.

Proof. Given any v € T;0M \ {0} for a fixed x € 9M, we consider the space
M := {bounded solutions y = y(t) on R to the ODE o p2((—iv,d;))y = 0} .
A direct computation shows that

M = Span (ef'”'t(at +b)-wola,beR, wy e APT;M|6M) )

n

which is hence a space of dimension N := 2 ( > We look at the pointwise map

3
j=1
y (031((_ivv8t))y7032((_ivvat))ya033((_ivvat))y)(0)

which we want to show to be an isomorphism. Note already that space dimensions are equal on both
sides. Since o, ((—iv,0;)) = 1d, op,((—iv,0;)) = =0 - v - +ivu*- and op,((—iv,0t)) = 0y - 1* +
iv A (v2-), we obtain that, for any fixed wy € APT* M, the element e~ VI - wy of M (corresponding
toa =0 and b= 1) is sent to (wy, |v|vaw + iva*wy, —|v|t*wo + v A (Vawp)); and that the element
te VIt . g of M (corresponding to a = 1 and b = 0) is sent to (0, —v_wp, t*wp). Choosing a basis
(wél), e ,w(()N)) of APTY M, the basis (e"”'t -w(()l), eIl -wéN),te_|“|t 'w(()l), eIt wéN))

of M will therefore be sent to a basis of @?:1 E;. This shows the map M} — @;’:1 E; to be
an isomorphism. Therefore is elliptic.
Using @, it is easy to see that is also self-adjoint. Moreover, the kernel of is reduced to
{0}: namely, if w € QP(M) solves with f = 0 as well as w; = wy = w3 = 0, then implies
that [|Awl|z2(pr) = 0, from which w =0 on M follows using w,,, = 0.
As a consequence, fixing f = 0 as well as w; = 0, for any given (wz,w3) € QP~HOM) & QP(OM),
there exists a unique w € QP(M) solving . In particular, w € Z, where, as in the proof of
Theorem

Z:={we QP (M) | A%w = 0 on M and W),y =0} -

This shows the map Z — QP(OM) @ QP~1(OM), w — (vadw, t*éw), to be onto. This proves 1.

Changing the boundary operators By and B via Bow := v1Aw+qu*(dw) and Bsw 1= (*Aw—qvidw
for some real contant ¢ (which actually plays no role since it is only involved in the first-order-
terms of the b.c. and not in their principal symbols), we still get elliptic boundary conditions
for A2: for any v € T;OM \ {0}, the pointwise map M} — @?:1 E; from above sends
e 1Yt W to (wo,0,0) and sends te~ "It - wy to (0,2]v|vwo, 2|v|t*wp), which shows that map to
be an isomorphism. Therefore By, By, Bs define elliptic boundary conditions for A2, this proves 2.0

Lemma 6.2 Let M"™ < R™™ be an isometric immersion and let II be the second fundamental
form of the immersion. For all X,Y € TM and N € T*+M, we have

(VxIIN)(Y) = (Vy IIN)(X) = gy n(X) + gy (YY), (56)

30



where V)L(N = (V%‘}MmN)L defines the normal connection on TM. As a consequence, by writing
Oy, = 8;:_ + Oj;i foralli=1,---,n+m, the divergence of the endomorphism 1Ty, is equal to

(M) = —nd((H,0%)) — nll5(dL) + i 157 (0F). (57)

Here {f1, -+, fm} is a local orthonormal frame of T+M and H s the mean curvature field of the
1MMersion.

Proof. Let X,Y, Z be vector fields in T'M that we assume to be parallel at some point in M and
let N € T+M. We compute
(VxIIN)(Y,Z) = X{UIN(Y,Z2))
= X{I(Y,Z),N)
= (VR"I(Y, 2),N) + I(Y, Z), V5" N)
= (V¥"II(X,Z),N) + (II(Y, Z),VE " N)
= Y(IN(X,2) = (I(X,2), V¥ " N) + (I(Y,2), V& N)
= (VyIIN)(X,Z) — IIV%/N(X, Z)+ IIv§N(Y, Z).
In the fourth equality, we use the Codazzi equation for submanifolds in R”*™, Hence we get Equality

(56). To find Equation , we decompose 0, = 8;; + 8;1_ foralli=1,--- ,n+ m. Then from the
parallelism of the vector 0., and the Gauss formula, we get that

VE ot = VTl = vyl — (X, 9L,
where V is the Levi-Civita connection on T'M. Thus, we deduce that
Vi = (V¥ oLt = 1 (x,a0). (58)

The divergence of the endomorphism Iy, can be computed using Equation with N = 8;1_.
For X € T M, we have

By )(X) = =3 (VeI )(es X)
s=1

- Z(Vesﬂazli)(Xa es)

s=1

" n n
B _ Z(VXU%)(% es) — Z Iy (x o1 )(esres) + ZIIH(eS,a%;)(Xy es)

S

n

—nX((H,0})) — nll5(X,07) + iz (e, 07), fa)(II(X, €5), fa)

1s=1

a

Ms

= —nX((H,0;)) — ndl(05, X) + Y g, (0F). 117, (X)).

a=1

This ends the proof of the lemma. O

Proposition 6.3 For any p-form w, the curvature term Y ., es1R(es, X)w is equal to

n

S eciR(es, X Z Oy, (X)oIlP'w + 11, 5 (X) w,
s=1
where {e1,--- ,en} and {f1, -, fm} are respectively orthonormal basis of TM and T+M.
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Proof. In order to compute the curvature term, we use the Gaufl equation. Indeed, for any
XY, Z, T € TM we have

R(X,Y,Z,T)=—-(X,2),11(Y,T))+ (II(X,T),1I(Y, Z)),

which can be equivalently written as
m m
RX,Y)Z == g(I,(X), 2);,(Y) + > _ g(Iy,(Y), Z)If,(X).
a=1 a=1

Now, due to linearity, we can consider that w of the form e;; A--- Ae;,. Then, we compute

n

Zes_nR(es,X)w
s=1
nop

= ZZESJ(eiI AN Res, X)e, Ao+ Neiy)
s=1 j=1

m n

a=1 s=

P
Zg(ﬂ'fa(es), ei;)esa(eiy N N p (X)N--- Nej,)

m n P
+> ) Zg(ﬂfa (X),e5,)esa(en A Ay, (e) A Aei,)

j—th

p
D (=DM, (es), €3 )dsiyeiy A NGy Ao N5 (X) A Ne,

m n P
=TS (1) gy, (es), €5,)g (I, (X)), €5)ei, Ao NG A Aeg,
a=1 s=1 j=1

m n
33T ST ()M Iy, (X), €4, Bsigen A NG A Np(es) Ao Ae,

m
+> (=1t g(ILy, (X), e5,) g1}, (es), es)ei, A A&y A=+ Aei,.

By using the symmetry of the second fundamental form, the above computation reduces to

n
Y esiR(es, X)w = —Z Z Vg (s, (e,), €i))ei, Ao Neg A AT (X) A= Ne,
s=1 a=1 k,j=1
k;éj
—ZZ 1) g(IT7 (X)), eq))ei, A=+ A8y Ao Aey,
a=1 j=1

+Z Z 1)kt gy, (X),€5,)ei, A== Neg A AN p (e ) A=+ Neg,

a=1 k,j=1
k?'fj
3 S L, ()i )en A AT A Ay
a=1 j=1

Now, we prove that the first sum vanishes. Indeed, by decomposing with respect to k < j and
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k > j, it is equal to

S (DF gy, (e,) e )i A Ay A A (X) A A,

k<j
+3 ()M g(Iy, (er,) e e A AT (X) A NG Ao A,
k>j
= > (DM, (eqy), €0 ) T, (X) Aeiy Ao NGy Aves A8y A Aey,
k<j
+ ) ()M, (eq,) i, ) g, (X) Aeiy Avos NGy A NEi Ao A,
k>j
= 0.

In the same way, we prove that the third sum is equal to —>_"" | II][f:l] (I, (X)ow). Indeed, it is
equal to

S (DR (X)) s Ao AT A Mg (e) A Ae,)

k<j
+ ) (-0 (I, (X), e (e Ao Ap(eq) A Ny Ao Aeg)
k>j
= Z(]—U’f“ﬂ"“g(ﬂfa (X),ei,)(ei Av-- ANp (e ) A A€y A Ney,)
k<j
+Jz:(—1)k+1+kjlg(11fa (X),e;) (€ A= Neg, Ao Np(ez) A Neiy)
k>j
= > (19, (X), e (e A ANp(ei) Ao NGy A--- Neiy)
k<j
+ D (=1 gy, (X)) (e A A& Ao A, (e5,) A Aey,)
k>j

=~ g, (X)w).

In the last equality, we use the formula AP/(X; A~ A X)) =3P Xy A~ AAX) A--- A X, for
any vector fields X1, --- X, in T'M. Therefore, we deduce that

n m
S ewiR(es, X)w = _Z[[J%a( JW—ZU[P (I g, (X)ow) + I, 52 (X) s
s=1

- _Zﬂf Xl P + 1T, 7 (X) .

In the last equality, we used the identity AP~(X.a) = X_1APla — A(X) 0. O
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