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EIGENVALUE ESTIMATES ON WEIGHTED MANIFOLDS

VOLKER BRANDING AND GEORGES HABIB

ABSTRACT. We derive various eigenvalue estimates for the Hodge Laplacian acting on differen-
tial forms on weighted Riemannian manifolds. Our estimates unify and extend various results
from the literature and provide a number of geometric applications. In particular, we derive
an inequality which relates the eigenvalues of the Jacobi operator for f-minimal hypersurfaces
and the spectrum of the Hodge Laplacian.

1. INTRODUCTION AND RESULTS

The aim of spectral geometry is to obtain deep insights into both topology and geometry of
Riemannian manifolds from the spectrum of differential operators. However, in the case of an
arbitrary Riemannian manifold, it is in general not possible to explicitly calculate the spectrum
of a given differential operator. For this reason, it is very important to obtain characterizations
of the eigenvalues of such operators in terms of geometric data as for example curvature.
The most prominent spectral problem one can study is the case of the Laplace operator acting
on functions for which we recall several important results. Let 2 C M be a bounded domain of
a Riemannian manifold M with smooth boundary 92 and let A be an eigenvalue of the Dirichlet
problem
Au=MAu on )
{ u=20 on 0f) (1.1)

where u € C°(M) and A is the Laplace-Beltrami operator. From general spectral theory,
we know that the spectrum of the Dirichlet problem (IJ) is discrete and that the eigenvalues
satisfy

0<)\1§)\2§)\3§...§)\j§...—>00.

In the case that the manifold M is the Euclidean space with the flat metric (R", can), Payne,
Pélya and Weinberger [PGW1l [PGW?2] derived the following so-called universal inequalities for
the Dirichlet problem of the Laplace operator (II]). Namely, they show that for any integer
k>1

k
4
Mep1 = Ak < — Zl Ai- (1.2)
1=
An immediate consequence of ([L2)) is the following inequality,

4
Mer1 < (14 E))\k,
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which allows to get an estimate of all the eigenvalues if an upper bound is known on the lowest
one A1. Another kind of such inequality has been further developed by Hile and Protter (see
[HP]) and by Yang in [Y] who established the following estimate

k k
4
Z(AM — N2 < - Z(Akﬂ — M)A (1.3)
=1 =1
This inequality improves all the previous estimates. In [CY], Cheng and Yang were able to turn
the recursion formula (L3) into an estimate for the (k + 1)-th eigenvalue of (1) in terms of
some power of k as follows

Aot < Co(n, k) Ay, (1.4)

where Cy(n, k) is a constant only depending on n and k. For more details on the spectral
properties of the Dirichlet problem (ILI]) we refer to the lecture notes [Ash].

Many of these formulas have been generalized to the case of a Riemannian manifold. In this
setup, Chen and Cheng [CC| obtained an extrinsic estimate for eigenvalues of the Dirichlet
problem ([I.T]) of the Laplacian on a complete Riemannian manifold (M™, g) that is isometrically
immersed in an (n + m)-dimensional Euclidean space R"*™ (see also [EHI]). The estimate is

k k

4 n?
Dt =A% < =3 (s = M) (A + 7 sup [HP). (15)
i=1 i=1 @
Here, H = %trace(II) denotes the mean curvature of the immersion and II is the second

fundamental form. As a consequence, they deduce an upper bound for the (k + 1)-th eigenvalue
in terms of a power of k that involves the mean curvature.

In this article, we focus on the study of geometric differential operators on an interesting class
of Riemannian manifolds, the so-called Bakry-Emery manifolds. A Bakry-Emery manifold is
a triple (M, g,dps), where instead of the Riemannian measure dv, one considers the weighted
measure djif 1= e_fdvg with f € C°°(M). One often refers to this kind of manifolds as weighted
manifolds. While the initial motivation to study such kind of manifolds was to model diffusion
processes [BE] they have by now become famous in the study of self-similar solutions of the
Ricci flow, the so-called Ricci solitons. Also they appear in the analysis of shrinkers, which
represent a special class of solutions of the mean curvature flow. We refer to [CM| Section 2]
and [IRS] for more details.

Due to the presence of the weight, differential operators on weighted manifolds contain ad-
ditional contributions and also their spectrum is different compared to the case of standard
Riemannian manifolds. For example, the Laplace operator acting on functions on a weighted
manifold is defined as follows

Af = A+Vdf, (1.6)

where A = dd is the standard Laplace-Beltrami operator. A direct computation shows that
Ay, usually called drift Laplacian, is elliptic and self-adjoint (if M is compact) with respect to
the weighted measure e~/ dvg. Therefore, its spectrum is discrete and consists of an increasing
sequence of eigenvalues

O<)\17f§)\27f§---S)\j7f§---—>oo.

As in the standard case, the eigenvalue 0 corresponds to constant functions. Several results have
been obtained on the spectrum of this operator (see for example [MD] ML [ML1]) of which we
give a non-exhaustive list below. In particular, when a compact Bakry-Emery manifold (M™, g)
is isometrically immersed into the Euclidean space, Xia and Xu [XX] established the following
recursion formula

k 1 k

Z()\k+1,f — i) <~ Z()\k+1,f = i) (4N + 481;)13 VIV A g +n? sup |H|* + Sup \7iB)

i=1 i=1
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which clearly reduces to Inequality (3] when f is zero. Also several explicit calculations for
the drift Laplacian on self shrinkers were carried out in [CP [Z BK].

This article is devoted to the study of the Hodge Laplacian acting on differential forms on
weighted manifolds, which we will often refer to as drifting Hodge Laplacian, and also denote
it by Ay (see Subsection for the definition). As for functions, the drifting Hodge Laplacian
on differential p-forms has a discrete spectrum that entirely consists of nonnegative eigenvalues
denoted by (A; . ¢)i- In particular, we will derive various eigenvalue estimates as well as different
recursion formulas which will characterize the corresponding spectrum.

In the following, we present the main results of this article. First, we extend the results of
[Asal, [S] to the case of weighted manifolds:

Theorem 1.1. Let (M",g,dps = e_fdvg) be a compact Bakry-Emery manifold that is isomet-
rically immersed into the EBuclidean space R™™™ . For p = 1,...,n, we let A p,s be the first
nonnegative eigenvalue of Ay on p-forms and Xl,p,f the first positive eigenvalue of Ay on exact
p-forms. Then, we have the following estimate

1, -
Ap,f — AMp-1,f = ];llr\l/lf (%[”} - T}p} — Z(II[V’;])Q) : (1.7)

s=1

Also, we have the inequality

1 p—D o v P
bV < - HI? — 22 —’Scal Zldf1? ) d 1.8
Lp.f = Vol ¢ (M) /M (pn] | n(n —1) cal + n’ fl ok (1.8)

where Scal™ denotes the scalar curvature of M.

The tensor B + T}p ] appearing in the first statement of Theorem [[1]is the so-called p-Ricci

tensor, see (2.6) for the precise definition. Also, II,[,pj is some canonical extension of the second

fundamental form II of the immersion to differential p-forms in the direction of the normal
vector field v, see ([B3]) for more details.

Remark 1.2. (1) It is well-known that Ay y = A} ;. 5 where Aq ¢ is the first positive eigen-
value of Ay on functions. Hence we get the estimate for Ay s

1 1
Mp<— " HI?+ Z|df]? ) d 1.9
v = v, (IHE+ 1) i (1.9

which is the same estimate as in [BCP].

(2) It was shown in [JMZ] that when M is an embedded shrinker of revolution in R? such
that the intersection of M with some sphere has only two connected components and
such that M is symmetric with respect to reflection across the axis of revolution, then
equality is attained in (L9). Therefore, the inequality in Theorem [[] is attained for

p=1.
In addition to the eigenvalue estimates presented in Theorem [[LI, we establish the following

recursion formulas for the eigenvalues of the drifting Hodge Laplacian on weighted manifolds:

Theorem 1.3. Let X : (M™, g) — (R""™ can) be an isometric immersion. For any p €
{0,...,n}, the eigenvalues of the drifting Hodge Laplacian Ay acting on p-forms on a domain
Q of M with Dirichlet boundary conditions satisfy for any k > 1

k k
4 -
D> Mkt = Nipp)® < - D> Nkt = M) N — /Q<(‘B[p] + T}p})wmwz‘ﬂﬂf
=1

i=1

n2 1
40 [ HPwiPduy - g [ @AF +1dPloiPduy).
Q Q
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for a < 2. Also, we have
k k

o 2c a—
D Mkrips = Aipp)® < - D Mkrrps = Aip )™ Nigy — /Q (BW + T}p})wi,wﬁdﬂf
i=1 1=1

n? 1
0[PPl = [ @AF +1dPlPduy).
Q Q
for o> 2. Here, w; represents the i-th eigenform of Ay.

Remark 1.4. In Theorem [[LT] and Theorem the tensor B! appears in the estimates. It
is possible to express this tensor in terms of extrinsic geometric data via equation (@3] but as
this would further complicate the presentation of the eigenvalue estimates we do not make use
of this option.

In order to eliminate the dependence on w; in the statements of Theorem [[3] we take the

infimum over § of the smallest eigenvalue of the endomorphsim B[P + T][cp ) which we denote by
01 to deduce that

Corollary 1.5. Let X : (M",g) — (R""™ can) be an isometric immersion. For any p €
{0,...,n}, the eigenvalues of the drifting Hodge Laplacian Ay acting on p-forms on a domain
Q of M with Dirichlet boundary conditions satisfy for any k > 1

k k
4 . 1
Zl Mettps = Nips)* <~ 2()‘19+17p7f = Aip )" Nipp = 01+ 702)
1=
for a < 2. Also, we have
b 20 & 1
D Oksips = Xipp)* < =D ksrpg = Aipp)™ ™ iy — 1 + 502)
i=1 n =1

for a > 2. Here, we set 6y = sup(n?|H|* — 2Af — |df|?).
Q

Remark 1.6. (1) Choosing o = 2 in the estimates of Corollary generalizes the results
obtained by Xia and Xu [XX] for functions to the case of p-forms.
(2) In the case of « = 2 and f = @ recursion formulas similar to the ones of Corollary

were established in [CZ].

Finally, we finish by establishing an estimate for the index of a compact f-minimal hypersurface
of R"! as in [S2, TRS]. Recall that a f-minimal hypersurface M of the weighted manifold
(R**1, can, e~/ dvg) is a hypersurface such that the f-mean curvature vanishes,

of
Hy:=nH+ —=0
n f n +(9V 5

where H is the mean curvature. The stability operator of M, also called Jacobi operator, is then
defined for any smooth function v on M by

Ly(u) = Aju— (Rick " (v,v) + [I1*)u,
where Ricﬂfw+1 denotes the Bakry-Emery Ricci tensor. On an arbitrary Riemannian manifold
(N, h), the Bakry-Emery Ricci tensor (or the oo-Bakry-Emery Ricci tensor) is defined as follows
Ric} = Ric" + Hess" f,
where Hess™ f is the Hessian of f on N. In the case of N = (R™, can) we simply have that
RicH}nJrl = Hess®"" f and the stability operator acquires the form

Ly(u) == Aju— (Hess® " f(v,v) + [11]?)u.
The f-index of M is the number of negative eigenvalues of the Jacobi operator Ly. In order
to estimate this number, we will establish an upper bound for the eigenvalues ()\k(L f)) . of the
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Jacobi operator that depends on the eigenvalues of the drifting Hodge Laplacian Ay on p-forms.
This will generalize the result obtained in [IRS, Theorem A] when p = 1.

Theorem 1.7. Let (M", g) be a compact hypersurface of the weighted manifold (R™ 1, can, du; =

e*fdvg). Assume that M is f-minimal and that Ricﬂ}n+1 = HessRan >a > 0. We denote by
ki,...,kn the principal curvatures of the hypersurface. Then, for alll > 1 and 1 < p < n, we
have that

MN(Ly) < Xa@yp,s — P+ 1Da+yup(p — 1),

where vy = sup{kik; i # j} and

d(l) = <Zﬂ) (1—1)+1.

Now, if we set
[ = #{eigenvalues on p-forms of A which are less than (p + 1)a — ypmp(p — 1)},
we obtain the immediate two corollaries

Corollary 1.8. Let (M™, g) be a compact hypersurface of the weighted manifold (R"*!, can, dpy =

e_fdvg). Assume that M is f-minimal and that Ricﬂfwrl = HessRn+lf >a > 0. Then, for any
1 <p <n, we have that

1
>
“ (n+1
p+1

A particular case of Corollary [[.8is when M is self-shrinker. Recall that a self-shrinker manifold
is a compact and connected submanifold of the Euclidean space R"™ satisfying the equation

Ind(M) B.

X1 = —nH. Here X = (21,22, ...,Znsm) are the components of the immersion into R™+,
2
By taking the weight f = %, one can easily check that any self-shrinker hypersurface is

automatically f-minimal and that Hess®"™' f = can. Therefore,

Corollary 1.9. Let (M",g) — R" be a compact self-shrinker such that p(p — 1)y < p+1
for some 1 < p <n. Then, we have

1

n-+1
p+1

Remark 1.10. We would like to point out that Theorem [[L7] allows to obtain a statement on
the stability of f-minimal hypersurfaces in terms of its p-th Betti number which was only known
for p = 1 so far. However, the drawback is the fact that the stability estimate also depends on
the curvature of the hypersurface which is not the case for p = 1.

Indf(M) > bpy(M) +n+1,

- _IXP
for the weight f = =-.

This article is organized as follows: In Section 2 we present a number of general features on
Dirac and Laplace type operators on weighted manifolds. Section 3 provides the proofs of the
main results while Section 4 is devoted to a number of geometric applications. Throughout this
article, we will use the geometers sign convention for the Laplacian.

When finalizing this manuscript, the article “Spinors and mass on weighted manifolds” [BOJ ap-
peared, where most of the results presented in Subsection 2.1 have been obtained independently
from our calculations.
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2. DIRAC AND LAPLACE TYPE OPERATORS ON WEIGHTED MANIFOLDS

2.1. The Dirac operator on weighted manifolds. In this section, we study the question of
defining the fundamental Dirac operator on a weighted Riemannian spin manifold. In the famous
article of Perelman [Perl Remark 1.3] some results in this direction were already presented.

In particular, this will allow to get a new vanishing result on the kernel of the Dirac operator
based on the scalar curvature of weighted manifolds, see also [Per, Remark 1.3].

In order to approach this question, we first recall some basic facts on spin manifolds [LM].
Let (M™, g) be a Riemannian spin manifold of dimension n. The spinor bundle XM is a vector
bundle over the manifold M that is equipped with a metric connection V and a Hermitian scalar
product (-, -). On this bundle we have the Clifford multiplication of spinors with tangent vectors
which we denote by the symbol “-”. Remember that Clifford multiplication is compatible with
the connection on the spinor bundle. Moreover, it is skew-symmetric in the sense

(Y b)) ==, Y - )

for all Y € TM and ¢,p € I'(X¥M). The fundamental Dirac operator D: I'(XM) — I'(XM)
acting on spinors is defined by

D = Zn: €; Vei,
=1

where {e;}i=1,...n is an orthonormal basis of TM. The Dirac operator is an elliptic, first order
differential operator which is self-adjoint with respect to the L?norm (when M is compact).
Therefore, it admits a sequence of eigenvalues of finite multiplicities. Also, its square is related
to the Laplacian through the so-called Schrédinger-Lichnerowicz formula which is given by [LM]

1
D? =V*V + 1 ScalM| (2.1)

where V¥V = =" V. V. +> ", Vy,,e and Scal™ is the scalar curvature of the manifold
M. Let us now consider a smooth real valued function f on M and the weighted measure
dpy = et dvg. In order to define the Dirac operator on a compact weighted manifold, we use
the following variational principle. The standard Dirac action with a weighted measure is

B(w) = [ (. Dv)du. (22)
where ¢ € I'(XM).
Proposition 2.1. The critical points of [22]) are characterized by the equation
Dy — %df =0, (2.3)

Proof. We consider a variation of the spinor ¢ defined as 1;: (—e,&) x M — XM satisfying

% —0 — ¥ and we calculate

% | E (W) = /M(@,Dw + (0, Do) )dpiy
_ /M ({0, DY) + (D, @) — (df -1, 0)) dpsy
:/ (Re((2D — df )y, g)dpy.
M

Therefore, the critical points of the energy E are exactly solutions of Equation (22)). This
completes the proof. O

Motivated by the above calculation, we define
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Definition 2.2. The fundamental Dirac operator on a Bakry-Emery manifold (M™,g,dpuy) is
given by

Dy:=D — %df- (2.4)

Proposition 2.3. The operator Dy is elliptic. Moreover, if M is compact, it is self-adjoint
with respect to the L*-norm.

Proof. 1t is straightforward to check that D and D; have the same principal symbol, hence Dy
is clearly elliptic. To prove the second part, we choose two spinors v, ¢ and calculate

1

| Do in, = [ (DgeTdu, ~5 [ .ot au,

— [ w.De v, -5 [ (v T,
M M
1
= /M<1/}’ D@>e_fdvg - /M<¢7 df : <P>€_fd?)g + 5 /M<'l/1, df : <p>e_fdvg
:/ (v, Dp — 1df ~pye T dv,
M 2

— [ tw.Dge)e du,
M
The proof is complete. O

Remark 2.4. It is straightforward to check that (Z2)) is invariant under conformal transfor-
mations of the metric on M. Hence, we cannot expect that we can relate the properties of D
and Dy by conformally transforming the metric on M.

However, the spectral properties of D are essentially the same as the ones of the standard
Dirac operator D as is shown by the following proposition.

Proposition 2.5. On a Bakry-Emery manifold (M™, g,dpuy), we have
Dy(e!/?) = e//?D.

In particular, if ¥ is an eigenspinor of D associated with the eigenvalue X, then el/?y is an
eigenspinor of Dy associated with the same eigenvalue .

Proof. By a straightforward calculation, we have for any spinor field 1
Dy(l) = D(EIg) — Sl Pdf
= ef2Dy + %ef/de ch — %ef/de 1)
= el2Dy.
O

In order to obtain a corresponding Schriodinger-Lichnerowicz formula for Dy we make the
following observation: The L2-adjoint of V with respect to the weighted measure e~/ dvg will
be denoted by V;‘c and is given by the following expression

V;kc =V*"+ V.
Hence, we have

Proposition 2.6. The square of DJ% satisfies the following formula:

1 1 1
2 * M 2
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Proof. A direct calculation shows

D} = (D~ 5df (D~ 5df)
— p2_Yrpwary—tar oy taroar
= D ID(f) ~ 5df - D+ gdf -df

= D2—%(Mf—df-D—QVdf)—%df-DJridf-df-

1 1
= D?- AV — Z\df\Q-
Combining with (2.1]) and using the definition of V;‘c completes the proof. O

As in the case of the fundamental Dirac operator on Riemannian spin manifolds [Li], we deduce
the following vanishing result

Corollary 2.7. Let (M, g,duy) be a closed Bakry-Emery manifold. If Scal™ > 2Af + |df|?,
then ker D = 0.

Proof. This follows directly from Proposition and the invariance of the spectrum of the
Dirac operator in Proposition O

Remark 2.8. Suppose that (M, g) is a closed Riemannian surface. If we integrate the condition
ScalM > 2Af + |df|* with respect to the standard Riemannian measure dv,, we get

21 (M) — /M \df|*dv, > 0,

where x (M) represents the Euler characteristic of the surface. Hence, this inequality can only
be satisfied on a surface of positive Euler characteristic.

2.2. The Bochner-Laplacian on weighted manifolds. In this section, we will recall the
Hodge Laplacian on weighted manifolds and define a twisted Laplacian motivated from the
expression of the Dirac operator in the previous section. This will also allow to get a new
vanishing result on the cohomology groups of the manifold.

For this, let (M",g,duy = e f dvg) be a Riemannian Bakry-Emery manifold. We denote by d
the exterior differential and by & the codifferential. The weighted codifferential is defined by
d¢ := 6 4 df 1 where we identify here (and in all the paper) vectors with one-forms through the
musical isomorphism. The weighted codifferential is the L2-formal adjoint of d with respect to
the measure djy, when M is compact. By a straightforward computation, one shows that

67 =0(8 + df u) + df 2(6 + df 2) = 8(df 2) + df 26 = 0,

where we use the fact 0(df 1) = —df 1, since HessM f = Vdf is a symmetric endomorphism.
The drifting Hodge Laplacian on differential forms is then defined as

A = dSg + b5d.

Clearly, the drifting Hodge Laplacian commutes with d and ¢y and, therefore, it preserves the
spaces of exact and weighted coexact forms. Moreover, this operator is elliptic and, when M
is compact, it is self-adjoint with respect to the weighted measure dyuy. Therefore, as for the
ordinary Hodge Laplacian on compact manifolds, the drifting Hodge Laplacian restricted to
differential p-forms (1 < p < n) has a spectrum that consists of a nondecreasing, unbounded
sequence of eigenvalues with finite multiplicities, that is

Spec(Af) = {0 < )\1,p,f < )‘2,p,f <.. }

The eigenvalue 0 corresponds to the space of f-harmonic forms, that is differential forms w
satisfying dw = 0 and dyw = 0. Notice that, by standard elliptic theory, we have an isomorphism
[Ll Formula 2.13],

HP(M) ~{w e QP(M)| dw =0, 65w = 0},
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meaning that the f-Betti numbers do not depend on f. Now it is shown in [PW], that the
drifting Hodge Laplacian Ay has a corresponding Bochner-Weitzenbock formula which is

Ap=V3v + Bl 7P (2.6)

where B8P = ZZj:l e; A e; .RM (e, e;) is the Bochner operator that appears in the Bochner-
Weitzenbock formula for A = dd + dd. Here, RM(X,Y) := [Vx,Vy] — V(x,y] is the curvature

tensor operator of M for X,Y € T'M and T}p Vis the self-adjoint endomorphism of AP(M) given
by

(T}p}w)(Xl, o Xp) = Zw(X1, VP F(XR), - » Xp) (2.7)
k=1

for all Xy,...,X, € TM and {ey,...,e,} is a local orthonormal frame of TM. The tensor
Bl 4 T}p] is called the p-Ricci tensor and is denoted by Ricgfp ) (see [P]). For p = 1, the p-Ricci

p

tensor is just Ric;l) = Ric™ 4+ Hess™ f which is the co-Bakry-Emery Ricci tensor. Also, for any
N €] —00,0[Uln —p+ 1, 00[, we let

o . Ric® 1
Rlchf = RICf N n—pt 1)
which corresponds to the so-called N-Bakry-Emery Ricci tensor for p = 1. It is now a well-
known fact that the Bochner-Weitzenbock formula gives rise to the Gallot-Meyer estimate on
manifolds having a lower bound on the Bochner operator B! [GM]. In the following, we will
adapt this technique to give an estimate for the eigenvalues of the drifting Hodge Laplacian on
a Bakry-Emery manifold having a lower bound on Ricg\];? £ For this, we denote by )‘/l,p, 7 the first

positive eigenvalue of Ay restricted to exact p-forms. Then, we have

(df A (df 5))

Proposition 2.9. Let (M",g,duys) be a compact Bakry-Emery manifold. If Ricg\z;)f > p(n—p)y
for some v > 0, then the first eigenvalue Xl,p,f satisfies the estimate

N

/
Nipf = p(n— P)’Ym-

Proof. Let w be any exact p-eigenform. Applying the Bochner-Weitzenbock formula (2Z.6]) yields
Mo [ VoPug = [ 19y + [ (6894 TP,y
M M M

Now, using that |Vw|? > n7;+1 |6w|? as w is closed [GM], we have that
1

2> 6w —df w]?
Vw|® > n_pH!fw f wl

s _ 2
S E W L)

1
N—-(n-p+1)

v

\df Jw|?.

1
N|5fw|2 -

Here, we use the inequality (ota)® > %2 - ]\?—2 for all N such that N(N —s) > 0. Therefore, by

S —S

integrating over M and using the fact )‘/l,p,f S lwlPdpy = i 105w|?dpy, we get the estimate. [

In the last part of this section, we will define a new drifting Hodge Laplacian acting on differential
p-forms that will allow us to get a new vanishing result on the cohomology groups. For this, recall
that the weighted Dirac operator defined in the previous section is Dy = > """ ; e; - Ve, — %df -
When restricted to differential forms, the operator Dy can be written as

- 1 1 ~ o~
Dy =) €AV, — €1V, — Sdf A t5dfa=dy+ 9y,
i=1
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where glvf =d— %df/\ and Sf =40+ %de. Here, we use the fact that X -w = X Aw — X _w for
any vector field X and a differential form w. It is not difficult to check that glv?c = gj% =0 and
that gf =07 — %df_n is the L?-adjoint of cjf with respect to the measure dy s = e_fdvg. Also the
square of the Dirac operator gives rise to the twisted Laplacian

D]2c = Zf = (Ifgf +gf£lvf
that has the same spectrum as A by Proposition Now, we establish a Bochner-Weitzenbock

formula for A ¢ in order to get a new vanishing result for the cohomology groups.

Proposition 2.10. Let (M,g,duys) be a Bakry-Emery manifold. Then, we have the Bochner-
Weitzenbock formula for the twisted drifting Hodge Laplacian

Ry = Vv 48P - Laf— Ll (2.8)
In particular, if M is compact and BP > %Af + i|df|2 for some p, then HP(M) = 0.
Proof. We compute
Ap = dgdp+6pds
= (d— Sdf NGy — 3df2) + (65 — Sdf)(d — Sdfn)

2
1

2
1 1 1 1
= Ay gLy —5df Aoy — §5f(de) + Zldfl2

= Af-— %d(de) —Sdf Noyp + idf A (df 5) — %5f(de) — %ded + ide(de)

1 1w 1 1 1 9
— Ay Vg — =TV Zaf A Ss — =64(dfA) + ~|df 2.
1= oVar = 5Ty = 5df Aoy = S0p(df A) + 7 |df|
In the last equality, we used the identity [S1, Lem. 2.1]
‘cdf = vdf + T}p}

Now, an easy computation shows that
Sp(dfA) = A+ Ve,df Al(eis) = Vg + |df|> — df A6y
i=1

Using the fact that T}p l = >oiey Ve df A (ejs) which can be proven by a straightforward com-
putation, we get after using Equation (2.0 and replacing the last equality,
1

1 1
Ap = Vv sl yTp - S\ §T}p} — 5df A5

1 1
- (Af+T}”1 — Vo + 12— df A 5f> + gl

— ViVl - %Af - i|df|2.
Note that (2.8) has the same structure as the corresponding Schrédinger-Lichnerowicz formula
for the Dirac operator on weighted manifolds (2.5]). The vanishing result on the cohomology is
obtained by just applying ([2.8) to a A f-harmonic form and integrating over M. Finally, the
fact that the set of A s-harmonic form is isomorphic to HP(M) allows to finish the proof. [

3. PROOFS OF THE MAIN RESULTS

In this section, we provide the proofs of the main results.

Proof of Theorem[I. We start by proving the first part of the theorem. We assume that
(M™, g,dpy = e f dvg) is a compact Bakry-Emery manifold that is isometrically immersed into
R™™. For p=1,...,n, we let A1, ¢ the first nonegative eigenvalue of Ay on p-forms and )‘/l,p,f
the first positive eigenvalue of Ay on exact p-forms. For every i = 1,...,n + m, the parallel
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unit vector field dx; decomposes into dz; = (9z;)” + (Oz;)* with (9z;)” = d(x; o 1) where ¢
is the isometric immersion. Now, take any p-eigenform w of Ay and consider the (p — 1)-form
¢i = (0z;)T 2w for each i = 1,...,n + m. By the Rayleigh min-max principle, we have that

n+m n+m

Mgy 3 [ Voaiy < 3 [ 6+ 1570 ()

In the following, we will adapt some computations done in [GS] to the context of the drifting
Hodge Laplacian (see also [Asa], [CGH, Thm. 5.8] for a similar computation). Denoting by

{e1,...,e,} alocal orthonormal frame of TM we find that
n+m n  nt+m n
S il = 303 g((0m)Te0)g((0m)T s en)les wren) = 3 lessol? = plof’. (32)
1=1 s,t=1 =1 , s=1
e

Here, we use the fact that o = 1 z w1 €s N esaa, for any p-form a. Moreover, by using the
Cartan formula and [GS, Eq. (4 3)] we write

do; = /_,'(axi)Tw — (3$i)Tde = V(axi)TW + IIEI(;}:B,)LW - (8xi)Tde,

where II[§] is the canonical extension of the second fundamental form IT of the immersion
to differential p-forms in the normal direction Z. More precisely, if we write (IIz(X),Y) =
(II(X,Y), Z) for any tangent vector fields X,Y € TM and Z € T+M, we define

M) (X1, Xp) = Y w(Xy,. . T 2(X0), . X)) (3.3)
=1

for any differential p-form w on M and X1,..., X, € TM. Now, as we did in (3.]]), we decompose
(0x;)T and (0x;)* in the frames {ey,...,e,} and {v1,...,v,} to compute the norm square of
do;, we deduce after summing over ¢ that

n+m m n
D e = Vol + Y IEw? + (p+ D]dw]? — 2 (Ve,w, e;1dw)
= s=1 i=1
m
= Vw2 + >[I + (p — 1)]dwl?. (3.4)
s=1
Here, {v1,...,m} is a local orthonormal frame of T+ M. In the above computation, we use the
fact that all cross terms involving (9z;)” and (9z;)*" are zero. By writing & i = 0¢; + df 2¢p;
with §¢; = —(0x;)T Jow which is a consequence from the fact that V(dz;)T = Hess™ (x; 01) is

a symmetric endomorphism, we get that

n+m n+m
> 18rdil> = (0= DIdwl + (p — Dldf swl* =2 Y ((02:)" 26w, df 2(0:)" sw)
i=1 i=1

= (p—Dw* + (p = V]df sw]® = 2 (e; 20w, df 2e; w)
=1
= (= D]6wl® + (p = V]df sw]? + 2(p — 1) (6w, df w)
= (p—1)[d7w|*. (3.5)
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Replacing Equalities ([8.2]), (34]) and (B.1) into Inequality (B.I]), we deduce after using the
Bochner-Weitzenbock formula (2.6) that

Phporg [ ey < [ (96 4 3D IR + (0= Dldsl? + (0= )15 )i
s=1

_ / (Ao, w) — (B + TP, w) + 3 [T du
M s=1

o= DAy [ Loy
M

- pxlvpvf/ w|2dp s +/ <<Z(1ﬂg§)2 — gl T}p}> w, w)dys.
M M s=1

This finishes the proof of the first part. To prove the second part of Theorem [I.T], we use the

same technique as in [S] and adapt it to the case of the drifting Hodge Laplacian. We consider

the exact p-form

(8-%'1'1 )T VANPRAN (89%)T,

forip, = 1,...,n+m,k = 1,...,p. By applying the min-max principle and summing over
Uy, ip, We get
X S / @i)T A~ A (B Pdug < 3 / 167 ((02i)" A ... A (B2 )T) Py
i1,...,ip M i1,...,ip M
(3.6)

Now, we manipulate both sums the same way as in [S]. The sum on the left hand side of (3.6])
is equal to p! (Z) (see [S, Lemma 2.1] for more details). To confirm this fact, we denote as
usual by {ej,...,e,} alocal orthonormal frame of TM and calculate

> 1@xi)" A A (D2,)T)

ily-"yip

= Z ((8@1 )T VANPIRAN ((%ip)T, ((%Zl )T VANPIRAN ((%ip)T)

11 5eenylp

= Z g((0z) T, e)g((0x) T ep)les A ... A ((9xl-p)T, et N... N\ (8xl-p)T>

11 40e0ylp,S,t

= Z Ssiles A (Ozi)T AL A (89%)T, et A (Ozi,)) T A LA (Bxip)T>
12,.0y0p,S,t

= > lea A @zi)" A A (D))
12,..45%p,8

=(n—p+1) > [(0x,)T AL A (0T

i27-"7i17

In the last line, we use the fact that, for any p-form w, the equality > »_, |es Aw|* = (n —p)|w|?
holds true. Hence, by induction, we deduce that

Z 10z )" Ao AOz)) P =(n—p+1)(n—p+2)...n=pl (Z) . (3.7)
ily-"yip

Now, we aim to compute the sum on the right hand side of ([B.6]). To this end we recall some

computations done in [S]. First, by [S, Eq. 3.3],

p

5 ((Owi)" Ao A (@i, )T) = S (=1 (0wi)T A A @2 )T A A (0,)T)
s=1
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where, on differential ¢-forms, the operator Ty[q} is defined as
T = 119 — n(H, V)1
[q]

for any normal vector field v. Here, I1;” is the canonical extension of the second fundamental
form as defined previously in ([B.3]). For any basis of orthonormal vector fields {v1,...,v,} €
Tp M=+, we set

m m

[T = > (ILI|* and (T2 =Y T2

s=1 s=1

It was shown in [S, p. 592] that
16 (@) A A (D)7 [P = plf T2 (3.8)
11 5eenylp

and the latter can be computed explicitly in terms of |II|? and the scalar curvature of M through
the formula (see [S, Lemma 2.5])

|12 = (Z) <pn\H\2 - %Sczﬂ”f) .

Therefore, we compute
107 ((023)" Ao A 0)T) 12 =16 ((02)T Ao A (0z3,)T) [P+ [df o ((0m,) T A
+ 208 ((0zi )T Ao A (02,)T) L df 5 (i) A

First, we show that the mixed term in (3.9]) vanishes. For this, we write
(0 ((0zi)" AN (02)T) df 5 ((023)T Ao A (0x3,)T))

(=0T (@)T A A @i )T A A (03,)T), df 2 (D)7 A A (0,)T))

I
M=

«
I
-

(=1 g((021,) ", va)9((0:,) " e5)

I
M“B

w
Il
-

x (TP (@) Ao A (@T Ao A0z )T df 5 ((02:)T Ao Aeg Aeo A (D2,)T))

P
= > (1) g(Ori,. va)g(dx;, , e5)

s=1

< (TP (@i )T A A @z )T A A (D2:) ), df 2 ((0mi)T A Aeg A A (0;)T)).
Hence, summing over i1, ...,1%,, we deduce that

> (@) A A (0T L df 5 ((023,)T AL A (93,)T)) = 0.
11 ,eenslp

Now, it remains to compute the sum over iy, ...,i, of the second term in (F3J). We establish

the following lemma:
Lemma 3.1. For any vector field X € T M, we have
n—1
> X ((0i)T AL A (0,)T) P = pl <p B 1) | X 2.
i1 yeemip

Proof. Using the formula X s(a Aw) = g(X, a*)w — a A X 1w, which is valid for any one-form a,
we write

X, ((8xi1)T A A (02)T) =g(X, (024,)) (0i,) T Ao A (O, T
— (0zi))T A(XS((0m,)" . A (023,)T))
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Taking the norm and summing over i1, ...,%,, we get that

Z | X ((&ml)T A A (8%’,,)T) 2
B Z 9(X, (0iy )T [(Oin) " A - A (B,) TP + Z (D) A (X o((0iy)T Ao A (D,)T)) P

i17 7ip 117 7ZP

=2 > g(X, (0i,) ) ((023,) "2 (D)™ Ao A (D)) 7)), X o((0iy)T A A (03,)T)).

Zly 7217

Using the fact that 3./ g(X, (02;)T)? = | X|? and Equation (B, the first sum in the above

)

equation is equal to (p — 1)! ( |X|2. Concerning the second sum, we make use of the
identity Y"1 (92:)" Aw]? = (n — p)|w|?, and deduce that the second sum is equal to
(n—p+2) > |1X3((023,)" Ao A (023,)7) P
i27-"7i17

After using X = """ g(X, (0x;)7) ()7, the last sum reduces to

=2 3 XL ((Ori)" A A (03,)T) P
i27---7ip
Here, we conclude that

S X ((02i)T A A (0,)T) P =(p — 1) (p " 1> X2

i15emsip

Thus, by induction, we deduce that

S X (@) A @) P =X (- 1t (") + =20 (1)

i1yl
+(n—p)n—p+1)(p—3)! (pﬁ?)) +...). (3.10)
After some algebraic manipulations, Equality ([B.I0) reduces to the following
p—1

2 n !
| X| (n_p_l)!kzz()(n_p+k)(n—p+k+1)

_ixp pl( 1 1 >
B (n—p—l)!k:o n—p+k n—p+k+1

poa— p
(n—p—1!n(n—p)

n—1
=p! (p_ 1) |X|2.

This finishes the proof of the Lemma. O

Using Lemma 3.1l with X = df and Equation (3.8]), we deduce that the sum over i,...,%, of
Equation (3.9) gives the following

_ -1
5 107 (@) A @ 1) 2 = T 1 4t (0 1)

ilv-"vil)
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Hence, by plugging Equation (3.1 into Inequality (3.6]) we get the estimate

/ 1 / o P@—=V v, P e
< H|* — 1 =|d, d
>\1,P,f = VOlf(M) " pn|H| n(n —1) Scal™ + n| f| K
completing the proof of Theorem [Tl O

Before we turn to the proof of Theorem [[3] we recall the following powerful results from [AH]
in which the authors show the following:

Theorem 3.2. [AHL Thm. 2] Let H be a complex Hilbert space with a given inner product
(,). Let A: D C H — H be a self-adjoint operator defined on a dense domain D which is
semi-bounded below and has a discrete spectrum A\; < Ay < A3.... Let {By : A(D) — H}Y_, be
a collection of symmetric operators which leave D invariant and let {u;}32, be the normalized
eigenvectors of A, u; corresponding to \;. This family is assumed to be an orthonormal basis
of H. Let g be a nonnegative and nondecreasing function of the eigenvalues {\;}7*,. Then we
have the inequality

N

INgE

m N
ZZ(Am'i‘l - )‘1)29()‘2)<[A7 Bk]uh Bkuz <

i=1 k=1 i=1 k:l
Here [A, B] := AB — BA is the commutator of the two operators A and B.

Am+1 — )[4, Bk]“z”

As a corollary of this result and by taking g(A\) = (A1 — A2 for a < 2, we get the following
inequality ﬂm, Cor. 3]

m N
ZZ m+1 — Ai)*([A, Bilui, Brug) SZZ mt1 = A)*T 1||[A Bk]u2||2 (3.11)

i=1 k=1 =1 k=1

In the same paper, the authors deal with another type of inequalities treated by Harell and
Stubbe [HaSt]. For this, we say that a real function f satisfies condition (H1) if there exists a
function r(x) such that

r—y 2
An example of such a function f is whenever f’ is concave, in this case r = f’. In [AH],

Ashbaugh and Hermi prove the following;:

Theorem 3.3. [AH, Thm. 7] Under the same assumptions as in the previous theorem, and if
f is a function satisfying the condition (H1), we have

Zf (Z (A Bk]ui,Bku») < —%Zr(&) (ZH[A, Bk]uiH2> + %,

k=1 i=1 k=1

where
o0

N m )
B3 3 A B ? (5204 ).

A _
k=1 i=1 j=m+1 m+1

For the particular case, when f(\) = (Apt1 — A)® with a > 2, they deduce the following
inequality ﬂm, Cor. 8]
N

ZZ m+1 — Ai)“([A, Bilu;, Bru;) < Z Amt1 = A)*T 1||[A Bk]“l” (3.12)

=1 k=1 zzlk:l

Proof of Theorem[1.3. In the following we will use Inequalities (B11) and ([B312) in the case of
the drifting Hodge Laplacian defined on a manifold with boundary. Recall that on a compact
Riemannian manifold (€2, g) with boundary 02 the Dirichlet problem on differential p-forms is
given by

l\DIQ

{ Apw =N jw on (3.13)

w=0 on 0f).
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We now take A = Ay and By, a function on €, which we will denote by G, in Inequalities
BII) and BI2Z). We follow closely the computations done in [IM]. Throughout the proof we
choose an orthonormal frame {e; };i=1 .., of T'M such that Ve; = 0 at a fixed point. First, using
Equation (2.6]), we compute

[Ap,Glw = [V}V,Glw
= <— > Ve Ve, + vdf> (Gw) — GV} Vw

i=1
= (AyG)w — 2V qw.

Here, we recall that AyG = AG + g(df,dG). Therefore, we get that

| 08r.6w.Godny = [ GAGPdus =2 [ 6(Facw)duy
| Gar@fdns - 5 [ @6 (s
| 6@ ldns =5 [ 1ol?(a,6)dns

= /Q|w|2|dc;|2duf. (3.14)

In the last equality, we use the fact that AfG2 = 2GA;G — 2|dG|? which can be shown by a
straightforward computation. Also, we have that

/Q\[Af,c]w\?duf:/Q(Afc)m?duf+4/Q\vdgwy2duf—4/QAfG<w,vde>duf. (3.15)

In the following, we will assume that the manifold 2 is a domain in a complete Riemannian
manifold (M™, g) that is isometrically immersed into the Euclidean space R"™" endowed with its
canonical metric. We choose in the above formulas the function G tobe G = z;,l =1,...,n+m
the components of the immersion X = (21,...,2nm). Recall that (9x;)" = d(x;0t) where ¢ is
the isometric immersion. In addition, w = w; are eigenforms of the problem ([B.I3]) associated
to the eigenvalues \; , r that are chosen to be of L?-norm equal to 1. The computation done in
(BI4) gives after summing over [ that

m-+n m-+n

Z/([Af’xl]wz’xlwl>dﬂf: Z/|d$l|2|wz|2duf:n
1=1 79 =1 /0

Recall here that S /7™ |dxy|?> = n. By taking G = x; in Equation ([BIH) and summing over [
yields

n+m

n+m n+m
3 / (A wildyy = 3 / (Apa)? iy +4 / IV o con 2
=1 /9 =1 79 =1 79

n+m

=1

n+m

= Y [ @+ gl ) Py +4 [ (Vs
=1 79 Q
—4/Q (Aml + g(df, d.%'l)) <w,~, Vdmlwi>duf

- /Q (W2HP + |df[2 + 2ng(df, H))Jws Pdpey + 4 /Q Veor Py

—2/(ng(H,dlwil2)+9(df,dlwz'|2))duf
Q
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- /Q (n? HI? + |df )i dpy + 4 /Q Vel
= /Q o(df, dlwi )duy.

Here, we used that the mean curvature of the immersion is given by H = %(Aml, ce i AT y).
Applying the Bochner-Weitzenbock formula ([2.6) to w; and taking the scalar product with w;
itself, the above equality acquires the form:

n+m
3 /Q [ /Q (2 HP + |df ) il Pdsg
=1

1
+4 <)‘i,p,f_ §/S)Af(‘wi‘2)dﬂf_/ﬂ<(%[p] +T}p})wz‘,wi>duf>
=2 [ (@l
- /Q (2 HP + |df )i Pduy
1 0 2 [p] [p]
4 { Aips— 3 - 7y wil)dps — Q<(’B + Ty )wi, wi)dpy
2 /Q (AF -+ |df )i 2dis;
= [ P P + (Ai,p,f - [ +T}p}>w@-,wi>dw>

- /Q (QAF + |df ) or[2dps.

Inserting the above equations into (BI1)) and ([BI2) completes the proof of Theorem [3l O

Proof of Theorem [I.7. First of all, let u be the function given by
w = (O AL AN O L, v Aw)

where w is a p-form on M and v is the inward unit normal vector field. Throughout the proof

we will denote by VR the connection on R"*! and by V the connection on M, as well as for

d®""" and d. To simplify the notations, we will denote u’>~~%+1 by u in the following technical

lemma (see [IRS, Lem. 3.1] for p = 1).

Lemma 3.4. Suppose that M is a f-minimal hypersurface of the weighted manifold (R"*!, g =
can, e_fdvg). Then, we have

Liu = —(@ziy AN Dz (VR A DT AW) + 20020, A A Dz, 11 (e) A Ve,w)
—(0ziy Ao AN OV AN AIPlw) + Oz, AL A 0z, Vv N Ajw)
+(0xyy Ao AN Oz, v A AIPH)20) — (Dzs, AL A O0xi, 1,V N\ f}p]w>
—HessRan(y, v)u.
Here f}p} is defined in the same way as in Section 2.2 on R™ 1.

Proof. For any X € TM, we have

X(u) = —(0ziy Ao N0, IH(X) Aw) 4 (O A A Oy, v A Vixw).



18 EIGENVALUE ESTIMATES ON WEIGHTED MANIFOLDS

Here, we used the fact that (V}R}nﬂw)T = Vxw, since w is a differential form on M. Differenti-

ating again with respect to X yields
Rn+l

X(X(u) = —(Qwiy Ao Az, VYT INX) Aw) — (Dagy Ao A Dz, TI(X) AVE T w)
Bz Ao Az, TI(X) AV xw) + (D, A ABay v AVY Y xw)
= —(0xy; A... N0z, VxII(X) Aw) — ITI(X)[*(Dzi, A ... A 0z, 1,V \w)
=20z N ... N Oz, II(X) A Vxw) — (Oxiy Ao A Oz, IT(X) Av ATI(X ) aw)
+(0xiyy Ao AN Oz, v ANV xVixw).
In the last part, we used the Gauss formula and the identity VJVH;}”Hw = II(X)_w. Now tracing
over an orthonormal frame {e;} of TM gives that

Aju = Au+ g(df,du)

= —(0xy; A... AN Oz, (0II) Nw) + T2 (D, A ... A 0xi, v Aw)
+2(0ziy A ... AN Oz, TX(e;) A Vew) — (O Ao A Oz, v A (112)[Ply)
—(0wyy N AN Oz, v ANV Vew) — (O0xiy A A Oz, T1(df) Aw)
+(0xiyy A N0z, v A Vgrw).

= n(0zy N... N0z, ,dH Nw) + ITI2u + 2(0xs A ... A Oxi, 1, 1(e;) AN Ve,w)
—{(Qwiy Ao N Oy v A (A2)P) + (D AL A Oy, v AV VW)
—(0wyy Ao AN Oy, TI(df) A w).

In the last equality, we used the fact that éII = —ndH and the expression of V}V. Now,

combining Equation (LI with the Bochner-Weitzenbock formula (Z6]) combined with (@3]
that is shown in the next section, the above equality reduces to

Apu = n(dziy A... ANz dH Aw) + [TIPu+ 20z, A ... Az, T1(e;) A Ve,w)
—(0ziy Ao N Oy VN APy + 0z, AL A O0xi,, 1, v A Ajw)
iy Ao A DTy v A <(II[1”])2 — nHIIP - T}P]) w)
—(0ziy Ao AN Oy, TI(df) A w).

Now, for a f-minimal hypersurface, we write

n 0

d® “f:df+—fy:df—nﬂy.

ov

Hence, by differentiating along a vector X € T'M, we get that
Rn+l

(VE T d® " )T = Vxdf +nHII(X).

Therefore, we find
(Tw) =Y e A (VETd™ ) w = Tl 4+ nHITP,
i=1
Also, we have that

ndH = —d (%) = (VBT T 4 11(df).

v
Hence, plugging these computations into the expression of Aju, we arrive at

Aju = =Dy Ao AN Oz, (VE T HT Aw)
+ITPu 4 2(0zi, A ... A O0z;, ., 11(e;) A Ve,w)
—(0ziy Ao N Oy v N A)Plw) + Dz, A ... A O0xi,, 1,V AN Ajw)
Oz, A A Oz A (TIPD2WY — (D, A A Dy, v A TP W),

f
The proof of the lemma then follows from the expression of L. O
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In order to complete the proof of Theorem [[7 we proceed as in [IRS]. Let {y;} be an
L?(e~/dv,)-orthonormal basis of eigenfunctions of L; associated to A\j(Ls). Let E? be the
sum of the first d-eigenspaces of Ay:

d d
BT = & Va,(Nps)
For all [ > 2, we consider the following system of equations

/ ute oy dpy = :/ utr Ly dpy =0,
M M

where we recall that w41 = (Qx;, A...dx;,,,,vAw). This system consists of <Z j__ i) (1-1)

homogeneous linear equations in the variable w € E?. Hence, if we take d = <Z _t i ) (I—1)+1,

we can find a non-trivial w € E4 which is orthogonal to the first (I — 1)-eigenfunctions of L.
Therefore, we deduce that

)\I(Lf)/ (uil,...,ip+1)2duf < / uil,...7ip+1Lf(uil,...,ip+1)dluf.
M M
Summing over i; < ... < ipy1, we first have for the Lh.s. that
S @i = Al = b
11 <. <Ipt1

For the r.h.s. of the previous inequality, we use the previous lemma to get that

Z u UL () = 2(p Aw, TT(eg) A Ve,w) — (U Aw, v A (112)[Pl )

1< <ipg
HUAw, v ANApw) + (Vv Aw,v A (11lP1)20)
—(vAw,v A f}p}aﬁ - HessRan(u, |v Awl?
= —(IP)Plo,w) + (Ao, w) + (17w, )
—(T}p]w,w> — HessRnﬂf(u, v)|wl?.

Hence, we deduce that

N(Ly) /M R /M (= () Plas, ) + (A j, w) + (P20, ) — (TP, )
—HessRan(y, v)|wl|?)dpy
< [ (HAPPlow) + (A gw,w) + (APP) = (o + Dalwl) dy
M

In the last equality, we used the fact that any eigenvalue of the operator f}p | is the sum of

p-distinct eigenvalues of Hess®"" f. Now, we have that

[ w0y <y [ Vol
M M

since w € E4D . Also, we have that

—((A)Ply, W) + (IIPY20,w) = — Zn:(II(ei) ATI(e;) aw, w) + | Zn: ei AI(e;)w|?
i=1 =1

n
= — Z (ej11(e;) w, e; 1II(ef) aw)
ij=1
< yup(p - 1)|w|?.

A
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Finally, we deduce that

MN(Lg) < Xa@yp,r — (0 + Da+yup(p — 1),

which finishes the proof of the theorem. O

Proof of Corollaries and [L.9. Let Iy be the largest integer such that d(lp) < . Thus,

. 1 _ 1 <
Now as we have that d <n+1>ﬁ+1 <n+1> < S, then
p+1 p+1
1 1 1
lo> | ——— 1— > .
0= n+1 pt n+1 ~(n+1 p
p+1 p+1 p+1

This proves the first corollary. To prove the second one, we take as before

1 1
lo= | by (M) +1 — ————
0 p( )+ n+1 )
p+1

n+1
p+1
then, we clearly have that d(ly) < b,(M). Therefore, Ay, p 5 = 0. In the case of a self-shrinker,

we recall that for f = X the hypersurface M is f-minimal and that Hess®"™' f

2 = g = can.
Hence with the assumption p(p — 1)ym < p+ 1, we deduce that A\jj(Ly) < 0. Finally, we get
that the index is at least n + 1 + lp by the fact that L has at least n + 1 eigenvalues equal to

—1. This finishes the proof. U

4. GEOMETRIC APPLICATIONS OF THE MAIN RESULTS

In this section we will provide several geometric applications of Theorem by making explicit
choices of the function f.

First, we will consider the case when f is the Riemannian distance function in order to compute
explicitly the different terms in the statement of Theorem [[L3l To this end, let M™ — R*T™
be an isometric immersion and €2 a domain in M. Consider the function f : 2 — R given by
f(X) = a@, where a is a real positive number. This particular choice of f has important
applications in mean curvature flow as described in the introduction of the article. Here, |- |
denotes the Euclidean norm in R"™™ and X = (x1,...,Zp4m) are the components of the
immersion. In other words, the function f is the square of the distance function from the origin
point 0 € R™™ to a point X € Q. Using the decomposition X = X7 4+ X+, we have that

dE f = aX and therefore, df = aX”. Hence, we deduce that

jdf? = a®(1X[* = | X (4.1)
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For any Y € T M, we compute
Vydf = aVyX"
= a(Vy " xTT
= a(y - V¥ xHT

— q (Y =S O(VETT X el-)el-)

=1

= <Y+ Xt v e ~)e,~>

=1

= a (Y + Zn:(Xl,II(Y, ei))ei>
= a(Y + IIZ):(i (Y)), (4.2)
where ITy . is defined as in the proof of Theorem [Tl By tracing (£.2]), we deduce that
Af =a(—n—n(X,H)). (4.3)
Also, plugging ([£.2) into the expression of T][cp ] yields
T[p]w = a(pw + H[p] w),
where II[g} is the canonical extension of ITz to p-forms as defined in (3.3]). Hence, we deduce

(T}p}w,uﬁ =a <p\w]2 + (II[)I?Lw,u») . (4.4)

In the following, we will bound the term <%[p}wi,wi> in Theorem by using the results of
[S3]. For this, recall that A. Savo shows in [S3, Thm. 1] that for any isometric immersion
(M™, g) — (N™™ g), the Bochner operator BP! on p-forms of M splits as

Bl — 3l | 3l

res’

where %[ }t is the operator defined by

m
B, = > (trace(tr,, ) - 11 oI
7j=1
Here, {v1,...,vmn} is a local orthonormal frame of TM*, and the operator %l[«zé]s is the operator

that satisfies
p(n —p)yn < BEL < p(n—p)Ly,

where vy and I' 5 are respectively a lower bound and an upper bound for the curvature operator
of N. Hence for an isometric immersion M — (R"*™ can), we deduce that

Bl — %g}’(]t _ HE’}I _ Z IIB’]] o II,[};J. (4.5)

Inserting Equations (£1]), [@3)), (£4) and (43]) in Theorem [[3] we deduce

Corollary 4.1. Let X : (M",g) — (R"*™ can) be an isometric immersion and let f = a@

where a is a real positive number. For any p € {0,...,n}, the eigenvalues of the drifting Hodge
Laplacian Ay acting on p-forms on a domain Q of M with Dirichlet boundary conditions satisfy
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for any k>1

k k
(07 4 a—
> Nktips = Nipp)® < - > N1 = Nip )™ Nips — /Q <II@XL+nH)wz‘7wz‘>dﬂf
=1

i=1
]2 — =
+j§1/Q|HVjWZ| dpy —ap + 5

a? 1
T [ XPPag g [ et - nHP ).
Q Q
for a < 2. Also, we have

k k

2a _
> Mkttps = Aipp)® < — 2 Nerip = Aipp)® "ips — /Q <IIEI£Xl+nH)wi’wi>dy’f
=1 =1

m
na
2 [ Mg - ap+ 5

i / X Py + 7 [ JaX* +nH Pl Pdy),

for a > 2.
The result in Corollary L] generalizes the one in [Z1, Thm. 1.1] when taking a = %, a =2 and
Q) = M being a domain in R™. In this case, IT = 0 and we get that

k k

1
Z()‘kﬂ,p,f - )‘mv,f)2 < Z()‘kﬂ,p,f — Xip.f) <)‘i,p,f 9 + Z ~ 16 mén(\X] ))
i=1 =1

Moreover, Corollary [£]] generalizes the result in [ZI, Thm 1.2] when taking for some integer
[ > 1, the number a = [ —1,a = 2 and (M", g) = (R" ! xS'(1), (, Ygn—1 @, )t ) where {, g is the
standard metric on the unit round sphere S!(1) of curvature 1. Indeed, we take the immersion

M — R ! x R! where the second fundamental form is given by the matrix <8 I%) Thus,

we have X+ = —v and nH = trace(II) = lv and, therefore, aX* +nH = v. Also, using that
Il = > ei AN1I(e;) aw for any p-form w, we deduce by a straightforward computation that

n

—(11Ply, w) 4 [TIIPly? = Z lejue;w|? < p(p — 1)|w]?.

ij=n—I+1
Hence, we get that
k k
4 2n(l—1)+1—4p(l—1) +4p(p—1)
Z()‘kﬂ,p,f 0D, f E Z Aktlp,f — ,p,f) ()‘i,p,f + 4
i=1 i=1
= )
X
min(|X ).

Corollary ] also generalizes the one in [CP] on compact self-shrinkers. In this case, for a = 1,
we get that

=

k m
1
> Merips = Aips)® < D krrpg = Nipf) Nip s + /Q ITT s g
j=1

i=1 i=1

3

—_

n . 5
—p+ 2 — g min(XP)).

W
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In the last part of this section, we will consider the case when f is the distance function from
some fixed point in M with respect to the Riemannian metric g on M. For this, fix a point
xo € M and consider the distance function

dyy 2 2 — [0, 00][, dy, () = d(x0, )

and pg,(2) = 1d,,()?. We recall from [Pe] that the distance function d, is smooth in the
complement of the cut locus of zy and that its gradient is of norm 1 almost everywhere. Thus
we will choose a domain 2 C M such that it is contained in this complement. Let us recall the
comparison theorem [Pe] (see also [HaSi]). For this, we consider for any I € R, the function

(n — 1)VIcot(v1r), 1>0

H(r)y=¢ =L 1=0

(n — 1)y/]l] coth(/]l]r), 1 <0.
Theorem 4.2. [Pe| Let (M",g) be a complete Riemannian manifold.
(1) IfRic™ > (n — 1)l for some | € R, then for every xo € M, the inequalities

Adlvo(x) 2 _Hl(dlvo(x))’ and Apmo(x) = _(1 +d$0(x) l(dlvo(x)),

hold at smooth points of dy,. Moreover, these inequalities hold on the whole manifold in
the sense of distributions.

(2) If the sectional curvature satisfies [} < KM <y and v is a minimizing geodesic starting
from xo € M such that its image is disjoint to the cut locus of xq, then

H, (t Hp,(t
v2dx0(X,X)gnl+(1)g(X,X), and  V2dy, (X, X) > 12(1)g(X,X),

n J—
for X L 5(t) and V2d,,(5(t),5(t)) = 0, for t € [0, L] for some L. As a consequence,
one has that

tHy, (t)

—1
for X L3(t) and V2 ey (31(8),3(1)) = 1.

We will now use Theorem to compute the different terms in Theorem We begin with

the case when Ric™ > (n — 1)l for some [ € R on the manifold M. By taking f = ap,, where

a > 0, we deduce that the inequalities
|df|2 = azdio, and Af(z) > —a(1+ dyy(x)H(dg, (z))

hold in the sense of distributions. Therefore, we deduce from Theorem the following

tHy,(t)

Ve (X, X) < —

9(X,X), and Vp,,(X,X) >

9(X, X),

Corollary 4.3. Let X : (M", g) — (R"™™™ can) be an isometric immersion. Assume that
Ric™ > (n—1)I for some 1 € R. Let xq be fized point in M and Q a domain in the complement
of the cut locus of xg. Let f = apy, for some positive real number a > 0. The eigenvalues of the
drifting Hodge Laplacian Ay acting on p-forms on Q with Dirichlet boundary conditions satisfy
for any k> 1

W
>

. 1
Z Mestpf = dipf)* < =D (esrps = dip ) Nips — 01+ 702),
i=1 i=1

3

for a < 2, where 61 = igf(‘B[p] + T}p}) and 9o is given by

Jo = sup (nZ|H|2 + 2a(1 4 dyy (2) Hy(dgy (x)) — a’dy, (x)z) .
e

Also, we have

k k
2a

- 1
D Nerips = dipp)® < — > Merrps = Xip )™ Nips — 61 + 152)’

i=1 i=1
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for a > 2.

In the following, we will consider the case when the sectional curvature of M is bounded from
below by I; and from above by lo. We let d2 be the number given by

sup (n2|H|2 ~4a ((p 1) deol@ iy (g @) 1) +2a(1 + dyy Hy, (day)) — a2d§0) L 1,<0

TEQ
0o 1=
sug (7”L2|H|2 - 4apw +2a(1 + dyo Hy, (dyy)) — a2dio) , 12 >0.
zE
We have

Corollary 4.4. Let X : (M", g) — (R"™™™ can) be an isometric immersion. Assume that
I < KM <[, for some li,lo € R. Let Q a domain in M such that € is contained in the
complement of the cut locus of xg € ). Let f = apy, for some positive real number a > 0. For
any p € {0,...,n}, the eigenvalues of the drifting Hodge Laplacian Ay acting on p-forms on a
domain 2 of M with Dirichlet boundary conditions satisfy for any k > 1

k k
(0% 4 a—
D Oksips = Xip ) < =D Mesips = X)) Nips — /Q (I widdpy
i=1

i=1
m—n 1
+) /Q T i g + 1%
j=1

for a < 2. Also, we have

k k
2a

D Merrps = Aip ) < D (Mrips = Xip )™ i = /Q (I, wi)dpg
i=1 i=1

m—n 1
[l ,.12 -
+]Zl/ﬂ|nijz| dpg + 16

for a > 2.

Proof. We proceed as in [S1]. At any point € Q\ {0}, there is an orthonormal frame
{e1(x),...,en_1(x),en = Vdy,(7)} such that V2p,, has the eigenvalues (), ..., 1m,_1(), 1.
By the comparison theorem [.2] we get that for any j =1,...,n—1

dmo($)H12 (dlvo(x)) dmo(x)Hh (dlvo(x))

n—1 n—1

< nj(z) <

Therefore, we find that

df|* = a’dZ, and Af > —a(l+ dy,H,(dy,)).

Recall that the endomorphism T}p] is by definition the sum of p distinct eigenvalues of V2f.
Hence, for any p-form w, we get that

a((p— )=o) 4 1) 2, 1, <0

(TPw,w) >
ap 2@ @)y 2 g, 5,
This is because of M >11ifly <0 and M < 1if I3 > 0. Replacing all

these inequalities in Theorem [[3] we get the result after combining with Equation (4.35]) for the
curvature term. OJ
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