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EIGENVALUE ESTIMATES ON WEIGHTED MANIFOLDS

VOLKER BRANDING AND GEORGES HABIB

Abstract. We derive various eigenvalue estimates for the Hodge Laplacian acting on differen-
tial forms on weighted Riemannian manifolds. Our estimates unify and extend various results
from the literature and provide a number of geometric applications. In particular, we derive
an inequality which relates the eigenvalues of the Jacobi operator for f -minimal hypersurfaces
and the spectrum of the Hodge Laplacian.

1. Introduction and results

The aim of spectral geometry is to obtain deep insights into both topology and geometry of
Riemannian manifolds from the spectrum of differential operators. However, in the case of an
arbitrary Riemannian manifold, it is in general not possible to explicitly calculate the spectrum
of a given differential operator. For this reason, it is very important to obtain characterizations
of the eigenvalues of such operators in terms of geometric data as for example curvature.
The most prominent spectral problem one can study is the case of the Laplace operator acting
on functions for which we recall several important results. Let Ω ⊂M be a bounded domain of
a Riemannian manifoldM with smooth boundary ∂Ω and let λ be an eigenvalue of the Dirichlet
problem {

∆u = λu on Ω
u = 0 on ∂Ω

(1.1)

where u ∈ C∞(M) and ∆ is the Laplace-Beltrami operator. From general spectral theory,
we know that the spectrum of the Dirichlet problem (1.1) is discrete and that the eigenvalues
satisfy

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λj ≤ . . . → ∞.

In the case that the manifold M is the Euclidean space with the flat metric (Rn, can), Payne,
Pólya and Weinberger [PGW1, PGW2] derived the following so-called universal inequalities for
the Dirichlet problem of the Laplace operator (1.1). Namely, they show that for any integer
k ≥ 1

λk+1 − λk ≤
4

nk

k∑

i=1

λi. (1.2)

An immediate consequence of (1.2) is the following inequality,

λk+1 ≤ (1 +
4

n
)λk,
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2 EIGENVALUE ESTIMATES ON WEIGHTED MANIFOLDS

which allows to get an estimate of all the eigenvalues if an upper bound is known on the lowest
one λ1. Another kind of such inequality has been further developed by Hile and Protter (see
[HP]) and by Yang in [Y] who established the following estimate

k∑

i=1

(λk+1 − λi)
2 ≤ 4

n

k∑

i=1

(λk+1 − λi)λi. (1.3)

This inequality improves all the previous estimates. In [CY], Cheng and Yang were able to turn
the recursion formula (1.3) into an estimate for the (k + 1)-th eigenvalue of (1.1) in terms of
some power of k as follows

λk+1 ≤ C0(n, k)k
2

nλ1, (1.4)

where C0(n, k) is a constant only depending on n and k. For more details on the spectral
properties of the Dirichlet problem (1.1) we refer to the lecture notes [Ash].
Many of these formulas have been generalized to the case of a Riemannian manifold. In this
setup, Chen and Cheng [CC] obtained an extrinsic estimate for eigenvalues of the Dirichlet
problem (1.1) of the Laplacian on a complete Riemannian manifold (Mn, g) that is isometrically
immersed in an (n+m)-dimensional Euclidean space Rn+m (see also [EHI]). The estimate is

k∑

i=1

(λk+1 − λi)
2 ≤ 4

n

k∑

i=1

(λk+1 − λi)(λi +
n2

4
sup
Ω

|H|2). (1.5)

Here, H := 1
ntrace(II) denotes the mean curvature of the immersion and II is the second

fundamental form. As a consequence, they deduce an upper bound for the (k+1)-th eigenvalue
in terms of a power of k that involves the mean curvature.
In this article, we focus on the study of geometric differential operators on an interesting class
of Riemannian manifolds, the so-called Bakry-Emery manifolds. A Bakry-Emery manifold is
a triple (M,g, dµf ), where instead of the Riemannian measure dvg one considers the weighted

measure dµf := e−fdvg with f ∈ C∞(M). One often refers to this kind of manifolds as weighted
manifolds. While the initial motivation to study such kind of manifolds was to model diffusion
processes [BE] they have by now become famous in the study of self-similar solutions of the
Ricci flow, the so-called Ricci solitons. Also they appear in the analysis of shrinkers, which
represent a special class of solutions of the mean curvature flow. We refer to [CM, Section 2]
and [IRS] for more details.
Due to the presence of the weight, differential operators on weighted manifolds contain ad-
ditional contributions and also their spectrum is different compared to the case of standard
Riemannian manifolds. For example, the Laplace operator acting on functions on a weighted
manifold is defined as follows

∆f := ∆ +∇df , (1.6)

where ∆ = δd is the standard Laplace-Beltrami operator. A direct computation shows that
∆f , usually called drift Laplacian, is elliptic and self-adjoint (if M is compact) with respect to

the weighted measure e−fdvg. Therefore, its spectrum is discrete and consists of an increasing
sequence of eigenvalues

0 < λ1,f ≤ λ2,f ≤ · · · ≤ λj,f ≤ · · · → ∞.

As in the standard case, the eigenvalue 0 corresponds to constant functions. Several results have
been obtained on the spectrum of this operator (see for example [MD, ML, ML1]) of which we
give a non-exhaustive list below. In particular, when a compact Bakry-Emery manifold (Mn, g)
is isometrically immersed into the Euclidean space, Xia and Xu [XX] established the following
recursion formula

k∑

i=1

(λk+1,f − λi,f )
2 ≤ 1

n

k∑

i=1

(λk+1,f − λi,f )
(
4λi,f + 4 sup

Ω
|∇f |

√
λi,f + n2 sup

Ω
|H|2 + sup

Ω
|∇f |2)

)
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which clearly reduces to Inequality (1.5) when f is zero. Also several explicit calculations for
the drift Laplacian on self shrinkers were carried out in [CP, Z, BK].
This article is devoted to the study of the Hodge Laplacian acting on differential forms on
weighted manifolds, which we will often refer to as drifting Hodge Laplacian, and also denote
it by ∆f (see Subsection 2.2 for the definition). As for functions, the drifting Hodge Laplacian
on differential p-forms has a discrete spectrum that entirely consists of nonnegative eigenvalues
denoted by (λi,p,f)i. In particular, we will derive various eigenvalue estimates as well as different
recursion formulas which will characterize the corresponding spectrum.
In the following, we present the main results of this article. First, we extend the results of
[Asa, S] to the case of weighted manifolds:

Theorem 1.1. Let (Mn, g, dµf = e−fdvg) be a compact Bakry-Emery manifold that is isomet-
rically immersed into the Euclidean space Rn+m. For p = 1, . . . , n, we let λ1,p,f be the first
nonnegative eigenvalue of ∆f on p-forms and λ′1,p,f the first positive eigenvalue of ∆f on exact
p-forms. Then, we have the following estimate

λ1,p,f − λ1,p−1,f ≥ 1

p
inf
M

(
B

[p] + T
[p]
f −

m∑

s=1

(II[p]νs )
2

)
. (1.7)

Also, we have the inequality

λ′1,p,f ≤ 1

Volf (M)

∫

M

(
pn|H|2 − p(p− 1)

n(n− 1)
ScalM +

p

n
|df |2

)
dµf , (1.8)

where ScalM denotes the scalar curvature of M .

The tensor B
[p] + T

[p]
f appearing in the first statement of Theorem 1.1 is the so-called p-Ricci

tensor, see (2.6) for the precise definition. Also, II
[p]
νs is some canonical extension of the second

fundamental form II of the immersion to differential p-forms in the direction of the normal
vector field νs, see (3.3) for more details.

Remark 1.2. (1) It is well-known that λ1,f = λ′1,1,f where λ1,f is the first positive eigen-
value of ∆f on functions. Hence we get the estimate for λ1,f

λ1,f ≤ 1

Volf (M)

∫

M

(
n|H|2 + 1

n
|df |2

)
dµf , (1.9)

which is the same estimate as in [BCP].
(2) It was shown in [JMZ] that when M is an embedded shrinker of revolution in R3 such

that the intersection of M with some sphere has only two connected components and
such that M is symmetric with respect to reflection across the axis of revolution, then
equality is attained in (1.9). Therefore, the inequality in Theorem 1.1 is attained for
p = 1.

In addition to the eigenvalue estimates presented in Theorem 1.1, we establish the following
recursion formulas for the eigenvalues of the drifting Hodge Laplacian on weighted manifolds:

Theorem 1.3. Let X : (Mn, g) → (Rn+m, can) be an isometric immersion. For any p ∈
{0, . . . , n}, the eigenvalues of the drifting Hodge Laplacian ∆f acting on p-forms on a domain
Ω of M with Dirichlet boundary conditions satisfy for any k ≥ 1

k∑

i=1

(λk+1,p,f − λi,p,f)
α ≤ 4

n

k∑

i=1

(λk+1,p,f − λi,f )
α−1
(
λi,p,f −

∫

Ω
〈(B[p] + T

[p]
f )ωi, ωi〉dµf

+
n2

4

∫

Ω
|H|2|ωi|2dµf −

1

4

∫

Ω
(2∆f + |df |2)|ωi|2dµf

)
,
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for α ≤ 2. Also, we have

k∑

i=1

(λk+1,p,f − λi,p,f)
α ≤ 2α

n

k∑

i=1

(λk+1,p,f − λi,p,f)
α−1
(
λi,p,f −

∫

Ω
〈(B[p] + T

[p]
f )ωi, ωi〉dµf

+
n2

4

∫

Ω
|H|2|ωi|2dµf −

1

4

∫

Ω
(2∆f + |df |2)|ωi|2dµf

)
,

for α ≥ 2. Here, ωi represents the i-th eigenform of ∆f .

Remark 1.4. In Theorem 1.1 and Theorem 1.3 the tensor B
[p] appears in the estimates. It

is possible to express this tensor in terms of extrinsic geometric data via equation (4.5) but as
this would further complicate the presentation of the eigenvalue estimates we do not make use
of this option.

In order to eliminate the dependence on ωi in the statements of Theorem 1.3, we take the

infimum over Ω of the smallest eigenvalue of the endomorphsim B
[p] + T

[p]
f which we denote by

δ1 to deduce that

Corollary 1.5. Let X : (Mn, g) → (Rn+m, can) be an isometric immersion. For any p ∈
{0, . . . , n}, the eigenvalues of the drifting Hodge Laplacian ∆f acting on p-forms on a domain
Ω of M with Dirichlet boundary conditions satisfy for any k ≥ 1

k∑

i=1

(λk+1,p,f − λi,p,f)
α ≤ 4

n

k∑

i=1

(λk+1,p,f − λi,p,f)
α−1
(
λi,p,f − δ1 +

1

4
δ2)

for α ≤ 2. Also, we have

k∑

i=1

(λk+1,p,f − λi,p,f)
α ≤ 2α

n

k∑

i=1

(λk+1,p,f − λi,p,f)
α−1
(
λi,p,f − δ1 +

1

4
δ2)

for α ≥ 2. Here, we set δ2 = sup
Ω

(n2|H|2 − 2∆f − |df |2).

Remark 1.6. (1) Choosing α = 2 in the estimates of Corollary 1.5 generalizes the results
obtained by Xia and Xu [XX] for functions to the case of p-forms.

(2) In the case of α = 2 and f = |X|2

2 recursion formulas similar to the ones of Corollary
1.5 were established in [CZ].

Finally, we finish by establishing an estimate for the index of a compact f -minimal hypersurface
of Rn+1 as in [S2, IRS]. Recall that a f -minimal hypersurface M of the weighted manifold
(Rn+1, can, e−fdvg) is a hypersurface such that the f -mean curvature vanishes,

nHf := nH +
∂f

∂ν
= 0,

where H is the mean curvature. The stability operator of M , also called Jacobi operator, is then
defined for any smooth function u on M by

Lf (u) := ∆fu− (RicR
n+1

f (ν, ν) + |II|2)u,

where RicR
n+1

f denotes the Bakry-Emery Ricci tensor. On an arbitrary Riemannian manifold

(N,h), the Bakry-Emery Ricci tensor (or the ∞-Bakry-Emery Ricci tensor) is defined as follows

RicNf = RicN +HessN f,

where HessNf is the Hessian of f on N . In the case of N = (Rn, can) we simply have that

RicR
n+1

f = HessR
n+1

f and the stability operator acquires the form

Lf (u) := ∆fu− (HessR
n+1

f(ν, ν) + |II|2)u.
The f -index of M is the number of negative eigenvalues of the Jacobi operator Lf . In order
to estimate this number, we will establish an upper bound for the eigenvalues

(
λk(Lf )

)
k
of the
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Jacobi operator that depends on the eigenvalues of the drifting Hodge Laplacian ∆f on p-forms.
This will generalize the result obtained in [IRS, Theorem A] when p = 1.

Theorem 1.7. Let (Mn, g) be a compact hypersurface of the weighted manifold (Rn+1, can, dµf =

e−fdvg). Assume that M is f -minimal and that RicR
n+1

f = HessR
n+1

f ≥ a > 0. We denote by
k1, . . . , kn the principal curvatures of the hypersurface. Then, for all l ≥ 1 and 1 ≤ p ≤ n, we
have that

λl(Lf ) ≤ λd(l),p,f − (p+ 1)a+ γMp(p− 1),

where γM = sup{kikj : i 6= j} and

d(l) =

(
n+ 1
p+ 1

)
(l − 1) + 1.

Now, if we set

β = ♯{eigenvalues on p-forms of∆f which are less than (p+ 1)a− γMp(p− 1)},

we obtain the immediate two corollaries

Corollary 1.8. Let (Mn, g) be a compact hypersurface of the weighted manifold (Rn+1, can, dµf =

e−fdvg). Assume that M is f -minimal and that RicR
n+1

f = HessR
n+1

f ≥ a > 0. Then, for any
1 ≤ p ≤ n, we have that

Indf (M) ≥ 1(
n+ 1
p+ 1

)β.

A particular case of Corollary 1.8 is whenM is self-shrinker. Recall that a self-shrinker manifold
is a compact and connected submanifold of the Euclidean space Rn+m satisfying the equation
X⊥ = −nH. Here X = (x1, x2, . . . , xn+m) are the components of the immersion into Rn+m.

By taking the weight f = |X|2

2 , one can easily check that any self-shrinker hypersurface is

automatically f -minimal and that HessR
n+1

f = can. Therefore,

Corollary 1.9. Let (Mn, g) → Rn+1 be a compact self-shrinker such that p(p − 1)γM ≤ p + 1
for some 1 ≤ p ≤ n. Then, we have

Indf (M) ≥ 1(
n+ 1
p+ 1

)bp(M) + n+ 1,

for the weight f = |X|2

2 .

Remark 1.10. We would like to point out that Theorem 1.7 allows to obtain a statement on
the stability of f -minimal hypersurfaces in terms of its p-th Betti number which was only known
for p = 1 so far. However, the drawback is the fact that the stability estimate also depends on
the curvature of the hypersurface which is not the case for p = 1.

This article is organized as follows: In Section 2 we present a number of general features on
Dirac and Laplace type operators on weighted manifolds. Section 3 provides the proofs of the
main results while Section 4 is devoted to a number of geometric applications. Throughout this
article, we will use the geometers sign convention for the Laplacian.

When finalizing this manuscript, the article “Spinors and mass on weighted manifolds” [BO] ap-
peared, where most of the results presented in Subsection 2.1 have been obtained independently
from our calculations.
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2. Dirac and Laplace type operators on weighted manifolds

2.1. The Dirac operator on weighted manifolds. In this section, we study the question of
defining the fundamental Dirac operator on a weighted Riemannian spin manifold. In the famous
article of Perelman [Per, Remark 1.3] some results in this direction were already presented.
In particular, this will allow to get a new vanishing result on the kernel of the Dirac operator
based on the scalar curvature of weighted manifolds, see also [Per, Remark 1.3].

In order to approach this question, we first recall some basic facts on spin manifolds [LM].
Let (Mn, g) be a Riemannian spin manifold of dimension n. The spinor bundle ΣM is a vector
bundle over the manifoldM that is equipped with a metric connection ∇ and a Hermitian scalar
product 〈·, ·〉. On this bundle we have the Clifford multiplication of spinors with tangent vectors
which we denote by the symbol “ · ”. Remember that Clifford multiplication is compatible with
the connection on the spinor bundle. Moreover, it is skew-symmetric in the sense

〈Y · ψ,ϕ〉 = −〈ψ, Y · ϕ〉

for all Y ∈ TM and ψ,ϕ ∈ Γ(ΣM). The fundamental Dirac operator D : Γ(ΣM) → Γ(ΣM)
acting on spinors is defined by

D :=
n∑

i=1

ei · ∇ei ,

where {ei}i=1,...,n is an orthonormal basis of TM . The Dirac operator is an elliptic, first order
differential operator which is self-adjoint with respect to the L2-norm (when M is compact).
Therefore, it admits a sequence of eigenvalues of finite multiplicities. Also, its square is related
to the Laplacian through the so-called Schrödinger-Lichnerowicz formula which is given by [LM]

D2 = ∇∗∇+
1

4
ScalM , (2.1)

where ∇∗∇ = −∑n
i=1∇ei∇ei +

∑n
i=1 ∇∇ei

ei and ScalM is the scalar curvature of the manifold
M . Let us now consider a smooth real valued function f on M and the weighted measure
dµf := e−fdvg. In order to define the Dirac operator on a compact weighted manifold, we use
the following variational principle. The standard Dirac action with a weighted measure is

E(ψ) :=

∫

M
〈ψ,Dψ〉dµf , (2.2)

where ψ ∈ Γ(ΣM).

Proposition 2.1. The critical points of (2.2) are characterized by the equation

Dψ − 1

2
df · ψ = 0. (2.3)

Proof. We consider a variation of the spinor ψ defined as ψt : (−ε, ε) ×M → ΣM satisfying
∇ψt

∂t

∣∣
t=0

= ϕ and we calculate

d

dt

∣∣
t=0

E(ψt) =

∫

M
(〈ϕ,Dψ〉 + 〈ψ,Dϕ〉)dµf

=

∫

M

(
〈ϕ,Dψ〉 + 〈Dψ,ϕ〉 − 〈df · ψ,ϕ〉

)
dµf

=

∫

M

(
Re〈(2D − df ·)ψ,ϕ〉dµf .

Therefore, the critical points of the energy E are exactly solutions of Equation (2.2). This
completes the proof. �

Motivated by the above calculation, we define
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Definition 2.2. The fundamental Dirac operator on a Bakry-Emery manifold (Mn, g, dµf ) is
given by

Df := D − 1

2
df · (2.4)

Proposition 2.3. The operator Df is elliptic. Moreover, if M is compact, it is self-adjoint
with respect to the L2-norm.

Proof. It is straightforward to check that D and Df have the same principal symbol, hence Df

is clearly elliptic. To prove the second part, we choose two spinors ψ,ϕ and calculate
∫

M
〈Dfψ,ϕ〉e−fdvg =

∫

M
〈Dψ,ϕ〉e−fdvg −

1

2

∫

M
〈df · ψ,ϕ〉e−fdvg

=

∫

M
〈ψ,D(e−fϕ)〉dvg −

1

2

∫

M
〈df · ψ,ϕ〉e−fdvg

=

∫

M
〈ψ,Dϕ〉e−fdvg −

∫

M
〈ψ, df · ϕ〉e−fdvg +

1

2

∫

M
〈ψ, df · ϕ〉e−fdvg

=

∫

M
〈ψ,Dϕ− 1

2
df · ϕ〉e−fdvg

=

∫

M
〈ψ,Dfϕ〉e−fdvg.

The proof is complete. �

Remark 2.4. It is straightforward to check that (2.2) is invariant under conformal transfor-
mations of the metric on M . Hence, we cannot expect that we can relate the properties of D
and Df by conformally transforming the metric on M .

However, the spectral properties of Df are essentially the same as the ones of the standard
Dirac operator D as is shown by the following proposition.

Proposition 2.5. On a Bakry-Emery manifold (Mn, g, dµf ), we have

Df (e
f/2) = ef/2D.

In particular, if ψ is an eigenspinor of D associated with the eigenvalue λ, then ef/2ψ is an
eigenspinor of Df associated with the same eigenvalue λ.

Proof. By a straightforward calculation, we have for any spinor field ψ

Df (e
f/2ψ) = D(ef/2ψ)− 1

2
ef/2df · ψ

= ef/2Dψ +
1

2
ef/2df · ψ − 1

2
ef/2df · ψ

= ef/2Dψ.

�

In order to obtain a corresponding Schrödinger-Lichnerowicz formula for Df we make the

following observation: The L2-adjoint of ∇ with respect to the weighted measure e−fdvg will
be denoted by ∇∗

f and is given by the following expression

∇∗
f = ∇∗ +∇df .

Hence, we have

Proposition 2.6. The square of D2
f satisfies the following formula:

D2
f = ∇∗

f∇+
1

4
ScalM −1

2
∆f − 1

4
|df |2. (2.5)
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Proof. A direct calculation shows

D2
f = (D − 1

2
df ·)(D − 1

2
df ·)

= D2 − 1

2
D(df ·)− 1

2
df ·D +

1

4
df · df ·

= D2 − 1

2
(δdf − df ·D − 2∇df )−

1

2
df ·D +

1

4
df · df ·

= D2 − 1

2
∆f +∇df −

1

4
|df |2.

Combining with (2.1) and using the definition of ∇∗
f completes the proof. �

As in the case of the fundamental Dirac operator on Riemannian spin manifolds [Li], we deduce
the following vanishing result

Corollary 2.7. Let (M,g, dµf ) be a closed Bakry-Emery manifold. If ScalM > 2∆f + |df |2,
then kerD = 0.

Proof. This follows directly from Proposition 2.6 and the invariance of the spectrum of the
Dirac operator in Proposition 2.5. �

Remark 2.8. Suppose that (M,g) is a closed Riemannian surface. If we integrate the condition

ScalM > 2∆f + |df |2 with respect to the standard Riemannian measure dvg, we get

2πχ(M) −
∫

M
|df |2dvg > 0,

where χ(M) represents the Euler characteristic of the surface. Hence, this inequality can only
be satisfied on a surface of positive Euler characteristic.

2.2. The Bochner-Laplacian on weighted manifolds. In this section, we will recall the
Hodge Laplacian on weighted manifolds and define a twisted Laplacian motivated from the
expression of the Dirac operator in the previous section. This will also allow to get a new
vanishing result on the cohomology groups of the manifold.

For this, let (Mn, g, dµf = e−fdvg) be a Riemannian Bakry-Emery manifold. We denote by d
the exterior differential and by δ the codifferential. The weighted codifferential is defined by
δf := δ + dfy where we identify here (and in all the paper) vectors with one-forms through the
musical isomorphism. The weighted codifferential is the L2-formal adjoint of d with respect to
the measure dµf , when M is compact. By a straightforward computation, one shows that

δ2f = δ(δ + dfy) + dfy(δ + dfy) = δ(dfy) + dfyδ = 0,

where we use the fact δ(dfy) = −dfyδ, since HessMf = ∇df is a symmetric endomorphism.
The drifting Hodge Laplacian on differential forms is then defined as

∆f := dδf + δfd.

Clearly, the drifting Hodge Laplacian commutes with d and δf and, therefore, it preserves the
spaces of exact and weighted coexact forms. Moreover, this operator is elliptic and, when M
is compact, it is self-adjoint with respect to the weighted measure dµf . Therefore, as for the
ordinary Hodge Laplacian on compact manifolds, the drifting Hodge Laplacian restricted to
differential p-forms (1 ≤ p ≤ n) has a spectrum that consists of a nondecreasing, unbounded
sequence of eigenvalues with finite multiplicities, that is

Spec(∆f ) = {0 ≤ λ1,p,f ≤ λ2,p,f ≤ . . .}.
The eigenvalue 0 corresponds to the space of f -harmonic forms, that is differential forms ω
satisfying dω = 0 and δfω = 0. Notice that, by standard elliptic theory, we have an isomorphism
[L, Formula 2.13],

Hp(M) ≃ {ω ∈ Ωp(M)| dω = 0, δfω = 0},
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meaning that the f -Betti numbers do not depend on f . Now it is shown in [PW], that the
drifting Hodge Laplacian ∆f has a corresponding Bochner-Weitzenböck formula which is

∆f = ∇∗
f∇+B

[p] + T
[p]
f (2.6)

where B
[p] =

∑n
i,j=1 e

∗
j ∧ eiyRM (ei, ej) is the Bochner operator that appears in the Bochner-

Weitzenböck formula for ∆ = dδ + δd. Here, RM (X,Y ) := [∇X ,∇Y ]−∇[X,Y ] is the curvature

tensor operator of M for X,Y ∈ TM and T
[p]
f is the self-adjoint endomorphism of Λp(M) given

by

(T
[p]
f ω)(X1, . . . ,Xp) =

p∑

k=1

ω(X1, . . . ,∇2f(Xk), . . . ,Xp) (2.7)

for all X1, . . . ,Xp ∈ TM and {e1, . . . , en} is a local orthonormal frame of TM . The tensor

B
[p]+ T

[p]
f is called the p-Ricci tensor and is denoted by Ric

(p)
f (see [P]). For p = 1, the p-Ricci

tensor is just Ric
(1)
f = RicM +HessMf which is the ∞-Bakry-Emery Ricci tensor. Also, for any

N ∈]−∞, 0[∪]n − p+ 1,∞[, we let

Ric
(p)
N,f := Ric

(p)
f − 1

N − (n− p+ 1)
(df ∧ (dfy))

which corresponds to the so-called N -Bakry-Emery Ricci tensor for p = 1. It is now a well-
known fact that the Bochner-Weitzenböck formula gives rise to the Gallot-Meyer estimate on
manifolds having a lower bound on the Bochner operator B

[p] [GM]. In the following, we will
adapt this technique to give an estimate for the eigenvalues of the drifting Hodge Laplacian on

a Bakry-Emery manifold having a lower bound on Ric
(p)
N,f . For this, we denote by λ

′
1,p,f the first

positive eigenvalue of ∆f restricted to exact p-forms. Then, we have

Proposition 2.9. Let (Mn, g, dµf ) be a compact Bakry-Emery manifold. If Ric
(p)
N,f ≥ p(n−p)γ

for some γ > 0, then the first eigenvalue λ′1,p,f satisfies the estimate

λ′1,p,f ≥ p(n− p)γ
N

N − 1
.

Proof. Let ω be any exact p-eigenform. Applying the Bochner-Weitzenböck formula (2.6) yields

λ′1,p,f

∫

M
|ω|2dµf =

∫

M
|∇ω|2dµf +

∫

M
〈(B[p] + T

[p]
f )ω, ω〉dµf .

Now, using that |∇ω|2 ≥ 1
n−p+1 |δω|2 as ω is closed [GM], we have that

|∇ω|2 ≥ 1

n− p+ 1
|δfω − dfyω|2

≥ 1

n− p+ 1
(|δfω| − |dfyω|)2

≥ 1

N
|δfω|2 −

1

N − (n − p+ 1)
|dfyω|2.

Here, we use the inequality (p+q)2

s ≥ p2

N − q2

N−s for all N such that N(N − s) > 0. Therefore, by

integrating overM and using the fact λ′1,p,f
∫
M |ω|2dµf =

∫
M |δfω|2dµf , we get the estimate. �

In the last part of this section, we will define a new drifting Hodge Laplacian acting on differential
p-forms that will allow us to get a new vanishing result on the cohomology groups. For this, recall
that the weighted Dirac operator defined in the previous section is Df =

∑n
i=1 ei · ∇ei − 1

2df ·.
When restricted to differential forms, the operator Df can be written as

Df =

n∑

i=1

ei ∧ ∇ei − eiy∇ei −
1

2
df ∧+

1

2
dfy = d̃f + δ̃f ,
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where d̃f := d− 1
2df∧ and δ̃f := δ + 1

2dfy. Here, we use the fact that X · ω = X ∧ ω −Xyω for

any vector field X and a differential form ω. It is not difficult to check that d̃2f = δ̃2f = 0 and

that δ̃f = δf − 1
2dfy is the L2-adjoint of d̃f with respect to the measure dµf = e−fdvg. Also the

square of the Dirac operator gives rise to the twisted Laplacian

D2
f = ∆̃f := d̃f δ̃f + δ̃f d̃f

that has the same spectrum as ∆ by Proposition 2.5. Now, we establish a Bochner-Weitzenböck

formula for ∆̃f in order to get a new vanishing result for the cohomology groups.

Proposition 2.10. Let (M,g, dµf ) be a Bakry-Emery manifold. Then, we have the Bochner-
Weitzenböck formula for the twisted drifting Hodge Laplacian

∆̃f = ∇∗
f∇+B

[p] − 1

2
∆f − 1

4
|df |2. (2.8)

In particular, if M is compact and B
[p] > 1

2∆f + 1
4 |df |2 for some p, then Hp(M) = 0.

Proof. We compute

∆̃f = d̃f δ̃f + δ̃f d̃f

= (d− 1

2
df∧)(δf −

1

2
dfy) + (δf −

1

2
dfy)(d− 1

2
df∧)

= ∆f −
1

2
d(dfy)− 1

2
df ∧ δf +

1

4
df ∧ (dfy)− 1

2
δf (df∧)−

1

2
dfyd+

1

4
dfy(df∧)

= ∆f −
1

2
Ldf −

1

2
df ∧ δf −

1

2
δf (df∧) +

1

4
|df |2

= ∆f −
1

2
∇df −

1

2
T
[p]
f − 1

2
df ∧ δf −

1

2
δf (df∧) +

1

4
|df |2.

In the last equality, we used the identity [S1, Lem. 2.1]

Ldf = ∇df + T
[p]
f .

Now, an easy computation shows that

δf (df∧) = ∆f +

n∑

i=1

∇eidf ∧ (eiy)−∇df + |df |2 − df ∧ δf .

Using the fact that T
[p]
f =

∑n
i=1∇eidf ∧ (eiy) which can be proven by a straightforward com-

putation, we get after using Equation (2.6) and replacing the last equality,

∆̃f = ∇∗
f∇+B

[p] + T
[p]
f − 1

2
∇df −

1

2
T
[p]
f − 1

2
df ∧ δf

−1

2

(
∆f + T

[p]
f −∇df + |df |2 − df ∧ δf

)
+

1

4
|df |2

= ∇∗
f∇+B

[p] − 1

2
∆f − 1

4
|df |2.

Note that (2.8) has the same structure as the corresponding Schrödinger-Lichnerowicz formula
for the Dirac operator on weighted manifolds (2.5). The vanishing result on the cohomology is

obtained by just applying (2.8) to a ∆̃f -harmonic form and integrating over M . Finally, the

fact that the set of ∆̃f -harmonic form is isomorphic to Hp(M) allows to finish the proof. �

3. Proofs of the main results

In this section, we provide the proofs of the main results.

Proof of Theorem 1.1. We start by proving the first part of the theorem. We assume that
(Mn, g, dµf = e−fdvg) is a compact Bakry-Emery manifold that is isometrically immersed into
Rn+m. For p = 1, . . . , n, we let λ1,p,f the first nonegative eigenvalue of ∆f on p-forms and λ′1,p,f
the first positive eigenvalue of ∆f on exact p-forms. For every i = 1, . . . , n +m, the parallel
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unit vector field ∂xi decomposes into ∂xi = (∂xi)
T + (∂xi)

⊥ with (∂xi)
T = d(xi ◦ ι) where ι

is the isometric immersion. Now, take any p-eigenform ω of ∆f and consider the (p − 1)-form

φi := (∂xi)
T
yω for each i = 1, . . . , n+m. By the Rayleigh min-max principle, we have that

λ1,p−1,f

n+m∑

i=1

∫

M
|φi|2dµf ≤

n+m∑

i=1

∫

M
(|dφi|2 + |δfφi|2)dµf . (3.1)

In the following, we will adapt some computations done in [GS] to the context of the drifting
Hodge Laplacian (see also [Asa], [CGH, Thm. 5.8] for a similar computation). Denoting by
{e1, . . . , en} a local orthonormal frame of TM we find that

n+m∑

i=1

|φi|2 =
n∑

s,t=1

n+m∑

i=1

g((∂xi)
T , es)g((∂xi)

T , et)

︸ ︷︷ ︸
δst

〈esyω, etyω〉 =
n∑

s=1

|esyω|2 = p|ω|2. (3.2)

Here, we use the fact that α = 1
p

∑n
s=1 e

∗
s ∧ esyα, for any p-form α. Moreover, by using the

Cartan formula and [GS, Eq. (4.3)], we write

dφi = L(∂xi)Tω − (∂xi)
T
ydω = ∇(∂xi)Tω + II

[p]

(∂xi)⊥
ω − (∂xi)

T
ydω,

where II
[p]
Z is the canonical extension of the second fundamental form II of the immersion

to differential p-forms in the normal direction Z. More precisely, if we write 〈IIZ(X), Y 〉 =
〈II(X,Y ), Z〉 for any tangent vector fields X,Y ∈ TM and Z ∈ T⊥M , we define

(II
[p]
Z ω)(X1, . . . ,Xp) :=

p∑

i=1

ω(X1, . . . , IIZ(Xi), . . . ,Xp) (3.3)

for any differential p-form ω onM andX1, . . . ,Xp ∈ TM . Now, as we did in (3.1), we decompose

(∂xi)
T and (∂xi)

⊥ in the frames {e1, . . . , en} and {ν1, . . . , νm} to compute the norm square of
dφi, we deduce after summing over i that

n+m∑

i=1

|dφi|2 = |∇ω|2 +
m∑

s=1

|II[p]νsω|2 + (p+ 1)|dω|2 − 2
n∑

i=1

〈∇eiω, eiydω〉

= |∇ω|2 +
m∑

s=1

|II[p]νsω|2 + (p− 1)|dω|2. (3.4)

Here, {ν1, . . . , νm} is a local orthonormal frame of T⊥M . In the above computation, we use the
fact that all cross terms involving (∂xi)

T and (∂xi)
⊥ are zero. By writing δfφi = δφi + dfyφi

with δφi = −(∂xi)
T
yδω which is a consequence from the fact that ∇(∂xi)

T = HessM (xi ◦ ι) is
a symmetric endomorphism, we get that

n+m∑

i=1

|δfφi|2 = (p − 1)|δω|2 + (p− 1)|dfyω|2 − 2

n+m∑

i=1

〈(∂xi)T yδω, dfy(∂xi)T yω〉

= (p − 1)|δω|2 + (p− 1)|dfyω|2 − 2

n∑

i=1

〈eiyδω, dfyeiyω〉

= (p − 1)|δω|2 + (p− 1)|dfyω|2 + 2(p − 1)〈δω, dfyω〉
= (p − 1)|δfω|2. (3.5)
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Replacing Equalities (3.2), (3.4) and (3.5) into Inequality (3.1), we deduce after using the
Bochner-Weitzenböck formula (2.6) that

pλ1,p−1,f

∫

M
|ω|2dµf ≤

∫

M
(|∇ω|2 +

m∑

s=1

|II[p]νsω|2 + (p− 1)|dω|2 + (p− 1)|δfω|2)dµf

=

∫

M
(〈∆fω, ω〉 − 〈(B[p] + T

[p]
f )ω, ω〉+

m∑

s=1

|II[p]νsω|2)dµf

+(p− 1)λ1,p,f

∫

M
|ω|2dµf

= pλ1,p,f

∫

M
|ω|2dµf +

∫

M
〈
(

m∑

s=1

(II[p]νs )
2 −B

[p] − T
[p]
f

)
ω, ω〉dµf .

This finishes the proof of the first part. To prove the second part of Theorem 1.1, we use the
same technique as in [S] and adapt it to the case of the drifting Hodge Laplacian. We consider
the exact p-form

(∂xi1)
T ∧ . . . ∧ (∂xip)

T ,

for ik = 1, . . . , n + m,k = 1, . . . , p. By applying the min-max principle and summing over
i1, . . . , ip, we get

λ′1,p,f

∑

i1,...,ip

∫

M
|(∂xi1)T ∧ . . . ∧ (∂xip)

T |2dµf ≤
∑

i1,...,ip

∫

M
|δf
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2dµf .

(3.6)
Now, we manipulate both sums the same way as in [S]. The sum on the left hand side of (3.6)

is equal to p!

(
n

p

)
(see [S, Lemma 2.1] for more details). To confirm this fact, we denote as

usual by {e1, . . . , en} a local orthonormal frame of TM and calculate
∑

i1,...,ip

|(∂xi1)T ∧ . . . ∧ (∂xip)
T |2

=
∑

i1,...,ip

〈(∂xi1)T ∧ . . . ∧ (∂xip)
T , (∂xi1)

T ∧ . . . ∧ (∂xip)
T 〉

=
∑

i1,...,ip,s,t

g((∂xi1)
T , es)g((∂xi1)

T , et)〈es ∧ . . . ∧ (∂xip)
T , et ∧ . . . ∧ (∂xip)

T 〉

=
∑

i2,...,ip,s,t

δst〈es ∧ (∂xi2)
T ∧ . . . ∧ (∂xip)

T , et ∧ (∂xi2)
T ∧ . . . ∧ (∂xip)

T 〉

=
∑

i2,...,ip,s

|es ∧ (∂xi2)
T ∧ . . . ∧ (∂xip)

T |2

= (n− p+ 1)
∑

i2,...,ip

|(∂xi2)T ∧ . . . ∧ (∂xip)
T |2.

In the last line, we use the fact that, for any p-form ω, the equality
∑n

s=1 |es ∧ω|2 = (n− p)|ω|2
holds true. Hence, by induction, we deduce that

∑

i1,...,ip

|(∂xi1)T ∧ . . . ∧ (∂xip)
T |2 = (n− p+ 1)(n − p+ 2) . . . n = p!

(
n

p

)
. (3.7)

Now, we aim to compute the sum on the right hand side of (3.6). To this end we recall some
computations done in [S]. First, by [S, Eq. 3.3],

δ
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
=

p∑

s=1

(−1)s+1T
[p−1]

(∂xis )
⊥
((∂xi1)

T ∧ . . . ∧ ̂(∂xis)
T ∧ . . . ∧ (∂xip)

T )
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where, on differential q-forms, the operator T
[q]
ν is defined as

T [q]
ν := II[q]ν − n〈H, ν〉I

for any normal vector field ν. Here, II
[q]
ν is the canonical extension of the second fundamental

form as defined previously in (3.3). For any basis of orthonormal vector fields {ν1, . . . , νm} ∈
TxM

⊥, we set

||II[q]||2 =
m∑

s=1

||II[q]νs ||2 and ||T [q]||2 =
m∑

s=1

||T [q]
νs ||2.

It was shown in [S, p. 592] that
∑

i1,...,ip

|δ
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2 = p!||T [p−1]||2 (3.8)

and the latter can be computed explicitly in terms of |II|2 and the scalar curvature ofM through
the formula (see [S, Lemma 2.5])

||T [p−1]||2 =
(
n

p

)(
pn|H|2 − p(p− 1)

n(n− 1)
ScalM

)
.

Therefore, we compute

|δf
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2 =|δ

(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2 + |dfy

(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2

+ 2〈δ
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
, dfy

(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
〉.

(3.9)

First, we show that the mixed term in (3.9) vanishes. For this, we write

〈δ
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
, dfy

(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
〉

=

p∑

s=1

(−1)s+1〈T [p−1]

(∂xis )
⊥
((∂xi1)

T ∧ . . . ∧ ̂(∂xis)
T ∧ . . . ∧ (∂xip)

T ), dfy
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
〉

=

p∑

s=1

(−1)s+1g((∂xis)
⊥, να)g((∂xis)

T , eβ)

× 〈T [p−1]
να ((∂xi1)

T ∧ . . . ∧ ̂(∂xis)
T ∧ . . . ∧ (∂xip)

T ), dfy
(
(∂xi1)

T ∧ . . . ∧ eβ ∧ . . . ∧ (∂xip)
T
)
〉

=

p∑

s=1

(−1)s+1g(∂xis , να)g(∂xis , eβ)

× 〈T [p−1]
να ((∂xi1)

T ∧ . . . ∧ ̂(∂xis)
T ∧ . . . ∧ (∂xip)

T ), dfy
(
(∂xi1)

T ∧ . . . ∧ eβ ∧ . . . ∧ (∂xip)
T
)
〉.

Hence, summing over i1, . . . , ip, we deduce that
∑

i1,...,ip

〈δ
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
, dfy

(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
〉 = 0.

Now, it remains to compute the sum over i1, . . . , ip of the second term in (3.9). We establish
the following lemma:

Lemma 3.1. For any vector field X ∈ TM , we have
∑

i1,...,ip

|Xy
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2 = p!

(
n− 1
p− 1

)
|X|2.

Proof. Using the formula Xy(α∧ω) = g(X,α♯)ω−α∧Xyω, which is valid for any one-form α,
we write

Xy
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
=g(X, (∂xi1)

T )(∂xi2)
T ∧ . . . ∧ (∂xip)

T

− (∂xi1)
T ∧

(
Xy((∂xi2)

T . . . ∧ (∂xip)
T )
)
.



14 EIGENVALUE ESTIMATES ON WEIGHTED MANIFOLDS

Taking the norm and summing over i1, . . . , ip, we get that
∑

i1,...,ip

|Xy
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2

=
∑

i1,...,ip

g(X, (∂xi1)
T )2|(∂xi2)T ∧ . . . ∧ (∂xip)

T |2 +
∑

i1,...,ip

|(∂xi1)T ∧
(
Xy((∂xi2)

T ∧ . . . ∧ (∂xip)
T )
)
|2

− 2
∑

i1,...,ip

g(X, (∂xi1 )
T )〈(∂xi1)T y

(
(∂xi2)

T ∧ . . . ∧ (∂xip)
T
)
,Xy((∂xi2)

T ∧ . . . ∧ (∂xip)
T )〉.

Using the fact that
∑n+m

i=1 g(X, (∂xi)
T )2 = |X|2 and Equation (3.7), the first sum in the above

equation is equal to (p − 1)!

(
n

p− 1

)
|X|2. Concerning the second sum, we make use of the

identity
∑n+m

i=1 |(∂xi)T ∧ ω|2 = (n − p)|ω|2, and deduce that the second sum is equal to

(n − p+ 2)
∑

i2,...,ip

|Xy
(
(∂xi2)

T ∧ . . . ∧ (∂xip)
T
)
|2.

After using X =
∑n+m

i=1 g(X, (∂xi)
T )(∂xi)

T , the last sum reduces to

−2
∑

i2,...,ip

|Xy
(
(∂xi2)

T ∧ . . . ∧ (∂xip)
T
)
|2.

Here, we conclude that

∑

i1,...,ip

|Xy
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2 =(p − 1)!

(
n

p− 1

)
|X|2

+ (n− p)
∑

i2,...,ip

|Xy
(
(∂xi2)

T ∧ . . . ∧ (∂xip)
T
)
|2.

Thus, by induction, we deduce that

∑

i1,...,ip

|Xy
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2 =|X|2

(
(p− 1)!

(
n

p− 1

)
+ (n− p)(p− 2)!

(
n

p− 2

)

+ (n− p)(n− p+ 1)(p − 3)!

(
n

p− 3

)
+ . . .

)
. (3.10)

After some algebraic manipulations, Equality (3.10) reduces to the following

|X|2 n!

(n− p− 1)!

p−1∑

k=0

1

(n− p+ k)(n− p+ k + 1)

=|X|2 n!

(n − p− 1)!

p−1∑

k=0

(
1

n− p+ k
− 1

n− p+ k + 1

)

=|X|2 n!

(n − p− 1)!

p

n(n− p)

=p!

(
n− 1
p− 1

)
|X|2.

This finishes the proof of the Lemma. �

Using Lemma 3.1 with X = df and Equation (3.8), we deduce that the sum over i1, . . . , ip of
Equation (3.9) gives the following

∑

i1,...,ip

|δf
(
(∂xi1)

T ∧ . . . ∧ (∂xip)
T
)
|2 = p!||T [p−1]||2 + p!

(
n− 1
p− 1

)
|df |2.
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Hence, by plugging Equation (3.7) into Inequality (3.6) we get the estimate

λ′1,p,f ≤ 1

Volf (M)

∫

M

(
pn|H|2 − p(p− 1)

n(n− 1)
ScalM +

p

n
|df |2

)
dµf

completing the proof of Theorem 1.1. �

Before we turn to the proof of Theorem 1.3, we recall the following powerful results from [AH]
in which the authors show the following:

Theorem 3.2. [AH, Thm. 2] Let H be a complex Hilbert space with a given inner product
〈·, ·〉. Let A : D ⊂ H → H be a self-adjoint operator defined on a dense domain D which is
semi-bounded below and has a discrete spectrum λ1 ≤ λ2 ≤ λ3 . . .. Let {Bk : A(D) → H}Nk=1 be
a collection of symmetric operators which leave D invariant and let {ui}∞i=1 be the normalized
eigenvectors of A, ui corresponding to λi. This family is assumed to be an orthonormal basis
of H. Let g be a nonnegative and nondecreasing function of the eigenvalues {λi}mi=1. Then we
have the inequality

m∑

i=1

N∑

k=1

(λm+1 − λi)
2g(λi)〈[A,Bk]ui, Bkui〉 ≤

m∑

i=1

N∑

k=1

(λm+1 − λi)g(λi)||[A,Bk]ui||2.

Here [A,B] := AB −BA is the commutator of the two operators A and B.

As a corollary of this result and by taking g(λ) = (λm+1−λ)α−2 for α ≤ 2, we get the following
inequality [AH, Cor. 3]

m∑

i=1

N∑

k=1

(λm+1 − λi)
α〈[A,Bk]ui, Bkui〉 ≤

m∑

i=1

N∑

k=1

(λm+1 − λi)
α−1||[A,Bk]ui||2. (3.11)

In the same paper, the authors deal with another type of inequalities treated by Harell and
Stubbe [HaSt]. For this, we say that a real function f satisfies condition (H1) if there exists a
function r(x) such that

f(x)− f(y)

x− y
≥ r(x) + r(y)

2
(H1).

An example of such a function f is whenever f ′ is concave, in this case r = f ′. In [AH],
Ashbaugh and Hermi prove the following:

Theorem 3.3. [AH, Thm. 7] Under the same assumptions as in the previous theorem, and if
f is a function satisfying the condition (H1), we have

m∑

i=1

f(λi)

(
N∑

k=1

〈[A,Bk]ui, Bkui〉
)

≤ −1

2

m∑

i=1

r(λi)

(
N∑

k=1

||[A,Bk]ui||2
)

+R,

where

R =
N∑

k=1

m∑

i=1

∞∑

j=m+1

|〈[A,Bk]ui, uj〉|2
(

f(λi)

λm+1 − λi
+

1

2
r(λi)

)
.

For the particular case, when f(λ) = (λm+1 − λ)α with α ≥ 2, they deduce the following
inequality [AH, Cor. 8]

m∑

i=1

N∑

k=1

(λm+1 − λi)
α〈[A,Bk]ui, Bkui〉 ≤

α

2

m∑

i=1

N∑

k=1

(λm+1 − λi)
α−1||[A,Bk]ui||2. (3.12)

Proof of Theorem 1.3. In the following we will use Inequalities (3.11) and (3.12) in the case of
the drifting Hodge Laplacian defined on a manifold with boundary. Recall that on a compact
Riemannian manifold (Ω, g) with boundary ∂Ω the Dirichlet problem on differential p-forms is
given by {

∆fω = λp,fω on Ω
ω = 0 on ∂Ω.

(3.13)
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We now take A = ∆f and Bk a function on Ω, which we will denote by G, in Inequalities
(3.11) and (3.12). We follow closely the computations done in [IM]. Throughout the proof we
choose an orthonormal frame {ei}i=1,...,n of TM such that ∇ei = 0 at a fixed point. First, using
Equation (2.6), we compute

[∆f , G]ω = [∇∗
f∇, G]ω

=

(
−

n∑

i=1

∇ei∇ei +∇df

)
(Gω)−G∇∗

f∇ω

= (∆fG)ω − 2∇dGω.

Here, we recall that ∆fG = ∆G+ g(df, dG). Therefore, we get that
∫

Ω
〈[∆f , G]ω,Gω〉dµf =

∫

Ω
G(∆fG)|ω|2dµf − 2

∫

Ω
G〈∇dGω, ω〉dµf

=

∫

Ω
G(∆fG)|ω|2dµf −

1

2

∫

Ω
〈dG2, d(|ω|2)〉dµf

=

∫

Ω
G(∆fG)|ω|2dµf −

1

2

∫

Ω
|ω|2(∆fG

2)dµf

=

∫

Ω
|ω|2|dG|2dµf . (3.14)

In the last equality, we use the fact that ∆fG
2 = 2G∆fG − 2|dG|2 which can be shown by a

straightforward computation. Also, we have that
∫

Ω
|[∆f , G]ω|2dµf =

∫

Ω
(∆fG)

2|ω|2dµf + 4

∫

Ω
|∇dGω|2dµf − 4

∫

Ω
∆fG〈ω,∇dGω〉dµf . (3.15)

In the following, we will assume that the manifold Ω is a domain in a complete Riemannian
manifold (Mn, g) that is isometrically immersed into the Euclidean space Rn+m endowed with its
canonical metric. We choose in the above formulas the function G to be G = xl, l = 1, . . . , n+m
the components of the immersion X = (x1, . . . , xn+m). Recall that (∂xl)

T = d(xl ◦ ι) where ι is
the isometric immersion. In addition, ω = ωi are eigenforms of the problem (3.13) associated
to the eigenvalues λi,p,f that are chosen to be of L2-norm equal to 1. The computation done in
(3.14) gives after summing over l that

m+n∑

l=1

∫

Ω
〈[∆f , xl]ωi, xlωi〉dµf =

m+n∑

l=1

∫

Ω
|dxl|2|ωi|2dµf = n.

Recall here that
∑n+m

l=1 |dxl|2 = n. By taking G = xl in Equation (3.15) and summing over l
yields

n+m∑

l=1

∫

Ω
|[∆f , xl]ωi|2dµf =

n+m∑

l=1

∫

Ω
(∆fxl)

2|ωi|2dµf + 4
n+m∑

l=1

∫

Ω
|∇dxlωi|2dµf

−4

n+m∑

l=1

∫

Ω
(∆fxl)〈ωi,∇dxlωi〉dµf .

=
n+m∑

l=1

∫

Ω
(∆xl + g(df, dxl))

2 |ωi|2dµf + 4

∫

Ω
|∇dxlωi|2dµf

−4

∫

Ω
(∆xl + g(df, dxl)) 〈ωi,∇dxlωi〉dµf

=

∫

Ω
(n2|H|2 + |df |2 + 2ng(df,H))|ωi|2dµf + 4

∫

Ω
|∇ωi|2dµf

−2

∫

Ω
(ng(H, d|ωi|2) + g(df, d|ωi|2))dµf
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=

∫

Ω
(n2|H|2 + |df |2)|ωi|2dµf + 4

∫

Ω
|∇ωi|2dµf

−2

∫

Ω
g(df, d|ωi|2)dµf .

Here, we used that the mean curvature of the immersion is given by H = 1
n(∆x1, . . . ,∆xn+m).

Applying the Bochner-Weitzenböck formula (2.6) to ωi and taking the scalar product with ωi
itself, the above equality acquires the form:

n+m∑

l=1

∫

Ω
|[∆f , xl]ωi|2dµf =

∫

Ω
(n2|H|2 + |df |2)|ωi|2dµf

+4

(
λi,p,f −

1

2

∫

Ω
∆f (|ωi|2)dµf −

∫

Ω
〈(B[p] + T

[p]
f )ωi, ωi〉dµf

)

−2

∫

Ω
(∆ff)|ωi|2dµf

=

∫

Ω
(n2|H|2 + |df |2)|ωi|2dµf

+4

(
λi,p,f −

1

2

∫

∂Ω

∂

∂ν
(|ωi|2)dµf −

∫

Ω
〈(B[p] + T

[p]
f )ωi, ωi〉dµf

)

−2

∫

Ω
(∆f + |df |2)|ωi|2dµf

=

∫

Ω
n2|H|2|ωi|2dµf + 4

(
λi,p,f −

∫

Ω
〈(B[p] + T

[p]
f )ωi, ωi〉dµf

)

−
∫

Ω
(2∆f + |df |2)|ωi|2dµf .

Inserting the above equations into (3.11) and (3.12) completes the proof of Theorem 1.3. �

Proof of Theorem 1.7. First of all, let u be the function given by

ui1,...,ip+1 = 〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧ ω〉

where ω is a p-form on M and ν is the inward unit normal vector field. Throughout the proof

we will denote by ∇Rn+1

the connection on Rn+1 and by ∇ the connection on M , as well as for

dR
n+1

and d. To simplify the notations, we will denote ui1,...,ip+1 by u in the following technical
lemma (see [IRS, Lem. 3.1] for p = 1).

Lemma 3.4. Suppose that M is a f -minimal hypersurface of the weighted manifold (Rn+1, g =
can, e−fdvg). Then, we have

Lfu = −〈∂xi1 ∧ . . . ∧ ∂xip+1
, (∇Rn+1

ν dR
n+1

f)T ∧ ω〉+ 2〈∂xi1 ∧ . . . ∧ ∂xip+1
, II(ei) ∧ ∇eiω〉

−〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧ (II2)[p]ω〉+ 〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧∆fω〉
+〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧ (II[p])2ω〉 − 〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧ T̃ [p]

f ω〉

−HessR
n+1

f(ν, ν)u.

Here T̃
[p]
f is defined in the same way as in Section 2.2 on Rn+1.

Proof. For any X ∈ TM , we have

X(u) = −〈∂xi1 ∧ . . . ∧ ∂xip+1
, II(X) ∧ ω〉+ 〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧ ∇Xω〉.
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Here, we used the fact that (∇Rn+1

X ω)T = ∇Xω, since ω is a differential form on M . Differenti-
ating again with respect to X yields

X(X(u)) = −〈∂xi1 ∧ . . . ∧ ∂xip+1
,∇Rn+1

X II(X) ∧ ω〉 − 〈∂xi1 ∧ . . . ∧ ∂xip+1
, II(X) ∧ ∇Rn+1

X ω〉
−〈∂xi1 ∧ . . . ∧ ∂xip+1

, II(X) ∧ ∇Xω〉+ 〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧∇Rn+1

X ∇Xω〉
= −〈∂xi1 ∧ . . . ∧ ∂xip+1

,∇XII(X) ∧ ω〉 − |II(X)|2〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧ ω〉

−2〈∂xi1 ∧ . . . ∧ ∂xip+1
, II(X) ∧ ∇Xω〉 − 〈∂xi1 ∧ . . . ∧ ∂xip+1

, II(X) ∧ ν ∧ II(X)yω〉
+〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧ ∇X∇Xω〉.

In the last part, we used the Gauss formula and the identity νy∇Rn+1

X ω = II(X)yω. Now tracing
over an orthonormal frame {ei} of TM gives that

∆fu = ∆u+ g(df, du)

= −〈∂xi1 ∧ . . . ∧ ∂xip+1
, (δII) ∧ ω〉+ |II|2〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧ ω〉
+2〈∂xi1 ∧ . . . ∧ ∂xip+1

, II(ei) ∧ ∇eiω〉 − 〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧ (II2)[p]ω〉

−〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧ ∇ei∇eiω〉 − 〈∂xi1 ∧ . . . ∧ ∂xip+1

, II(df) ∧ ω〉
+〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧ ∇dfω〉.
= n〈∂xi1 ∧ . . . ∧ ∂xip+1

, dH ∧ ω〉+ |II|2u+ 2〈∂xi1 ∧ . . . ∧ ∂xip+1
, II(ei) ∧∇eiω〉

−〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧ (II2)[p]ω〉+ 〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧ ∇∗
f∇ω〉

−〈∂xi1 ∧ . . . ∧ ∂xip+1
, II(df) ∧ ω〉.

In the last equality, we used the fact that δII = −ndH and the expression of ∇∗
f∇. Now,

combining Equation (4.5) with the Bochner-Weitzenböck formula (2.6) combined with (4.5)
that is shown in the next section, the above equality reduces to

∆fu = n〈∂xi1 ∧ . . . ∧ ∂xip+1
, dH ∧ ω〉+ |II|2u+ 2〈∂xi1 ∧ . . . ∧ ∂xip+1

, II(ei) ∧∇eiω〉
−〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧ (II2)[p]ω〉+ 〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧∆fω〉

+〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧

(
(II[p])2 − nHII[p] − T

[p]
f

)
ω〉

−〈∂xi1 ∧ . . . ∧ ∂xip+1
, II(df) ∧ ω〉.

Now, for a f -minimal hypersurface, we write

dR
n+1

f = df +
∂f

∂ν
ν = df − nHν.

Hence, by differentiating along a vector X ∈ TM , we get that

(∇Rn+1

X dR
n+1

f)T = ∇Xdf + nHII(X).

Therefore, we find

(T̃
[p]
f ω)T =

n∑

i=1

ei ∧ (∇Rn+1

ei dR
n+1

f)Tyω = T
[p]
f ω + nHII[p]ω.

Also, we have that

ndH = −d
(
∂f

∂ν

)
= −(∇Rn+1

ν dR
n+1

f)T + II(df).

Hence, plugging these computations into the expression of ∆fu, we arrive at

∆fu = −〈∂xi1 ∧ . . . ∧ ∂xip+1
, (∇Rn+1

ν dR
n+1

f)T ∧ ω〉
+|II|2u+ 2〈∂xi1 ∧ . . . ∧ ∂xip+1

, II(ei) ∧ ∇eiω〉
−〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧ (II2)[p]ω〉+ 〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧∆fω〉

+〈∂xi1 ∧ . . . ∧ ∂xip+1
, ν ∧ (II[p])2ω〉 − 〈∂xi1 ∧ . . . ∧ ∂xip+1

, ν ∧ T̃ [p]
f ω〉.

The proof of the lemma then follows from the expression of Lf . �
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In order to complete the proof of Theorem 1.7, we proceed as in [IRS]. Let {ϕj} be an

L2(e−fdvg)-orthonormal basis of eigenfunctions of Lf associated to λj(Lf ). Let Ed be the
sum of the first d-eigenspaces of ∆f :

Ed =
d
⊕
j=1

V∆f
(λj,p,f).

For all l ≥ 2, we consider the following system of equations
∫

M
ui1,...,ip+1ϕ1dµf = . . . =

∫

M
ui1,...,ip+1ϕl−1dµf = 0,

where we recall that ui1,...,ip+1 = 〈∂xi1∧. . . ∂xip+1
, ν∧ω〉. This system consists of

(
n+ 1
p+ 1

)
(l−1)

homogeneous linear equations in the variable ω ∈ Ed. Hence, if we take d =

(
n+ 1
p+ 1

)
(l−1)+1,

we can find a non-trivial ω ∈ Ed which is orthogonal to the first (l − 1)-eigenfunctions of Lf .
Therefore, we deduce that

λl(Lf )

∫

M
(ui1,...,ip+1)2dµf ≤

∫

M
ui1,...,ip+1Lf (u

i1,...,ip+1)dµf .

Summing over i1 < . . . < ip+1, we first have for the l.h.s. that
∑

i1<...<ip+1

(ui1,...,ip+1)2 = |ν ∧ ω|2 = |ω|2.

For the r.h.s. of the previous inequality, we use the previous lemma to get that
∑

i1<...<ip+1

ui1,...,ip+1Lf (u
i1,...,ip+1) = 2〈ν ∧ ω, II(ei) ∧ ∇eiω〉 − 〈ν ∧ ω, ν ∧ (II2)[p]ω〉

+〈ν ∧ ω, ν ∧∆fω〉+ 〈ν ∧ ω, ν ∧ (II[p])2ω〉
−〈ν ∧ ω, ν ∧ T̃ [p]

f ω〉 −HessR
n+1

f(ν, ν)|ν ∧ ω|2

= −〈(II2)[p]ω, ω〉+ 〈∆fω, ω〉+ 〈(II[p])2ω, ω〉
−〈T̃ [p]

f ω, ω〉 −HessR
n+1

f(ν, ν)|ω|2.
Hence, we deduce that

λl(Lf )

∫

M
|ω|2dµf ≤

∫

M

(
− 〈(II2)[p]ω, ω〉+ 〈∆fω, ω〉+ 〈(II[p])2ω, ω〉 − 〈T̃ [p]

f ω, ω〉

−HessR
n+1

f(ν, ν)|ω|2
)
dµf

≤
∫

M

(
−〈(II2)[p]ω, ω〉+ 〈∆fω, ω〉+ 〈(II[p])2ω, ω〉 − (p+ 1)a|ω|2

)
dµf .

In the last equality, we used the fact that any eigenvalue of the operator T̃
[p]
f is the sum of

p-distinct eigenvalues of HessR
n+1

f . Now, we have that
∫

M
〈∆fω, ω〉dµf ≤ λd(l),p,f

∫

M
|ω|2dµf ,

since ω ∈ Ed(l). Also, we have that

−〈(II2)[p]ω, ω〉+ 〈(II[p])2ω, ω〉 = −
n∑

i=1

〈II(ei) ∧ II(ei)yω, ω〉+ |
n∑

i=1

ei ∧ II(ei)yω|2

= −
n∑

i,j=1

〈ejyII(ei)yω, eiyII(ej)yω〉

≤ γMp(p− 1)|ω|2.
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Finally, we deduce that

λl(Lf ) ≤ λd(l),p,f − (p+ 1)a+ γMp(p− 1),

which finishes the proof of the theorem. �

Proof of Corollaries 1.8 and 1.9. Let l0 be the largest integer such that d(l0) ≤ β. Thus,

Indf (M) ≥ l0.

Now as we have that d




1
(

n+ 1
p+ 1

)β + 1− 1
(

n+ 1
p+ 1

)


 ≤ β, then

l0 ≥




1(
n+ 1
p+ 1

)β + 1− 1(
n+ 1
p+ 1

)


 ≥ 1(

n+ 1
p+ 1

)β.

This proves the first corollary. To prove the second one, we take as before

l0 =




1(
n+ 1
p+ 1

)bp(M) + 1− 1(
n+ 1
p+ 1

)


 ,

then, we clearly have that d(l0) ≤ bp(M). Therefore, λd(l0),p,f = 0. In the case of a self-shrinker,

we recall that for f = |X|2

2 the hypersurface M is f -minimal and that HessR
n+1

f = g = can.
Hence with the assumption p(p − 1)γM ≤ p + 1, we deduce that λl0(Lf ) ≤ 0. Finally, we get
that the index is at least n+ 1 + l0 by the fact that Lf has at least n+ 1 eigenvalues equal to
−1. This finishes the proof. �

4. Geometric applications of the main results

In this section we will provide several geometric applications of Theorem 1.3 by making explicit
choices of the function f .

First, we will consider the case when f is the Riemannian distance function in order to compute
explicitly the different terms in the statement of Theorem 1.3. To this end, let Mn → Rn+m

be an isometric immersion and Ω a domain in M . Consider the function f : Ω → R given by

f(X) = a
|X|2

2 , where a is a real positive number. This particular choice of f has important
applications in mean curvature flow as described in the introduction of the article. Here, | · |
denotes the Euclidean norm in Rn+m and X = (x1, . . . , xn+m) are the components of the
immersion. In other words, the function f is the square of the distance function from the origin
point 0 ∈ Rn+m to a point X ∈ Ω. Using the decomposition X = XT + X⊥, we have that

dR
n+m

f = aX and therefore, df = aXT . Hence, we deduce that

|df |2 = a2(|X|2 − |X⊥|2). (4.1)
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For any Y ∈ TM , we compute

∇Y df = a∇YX
T

= a(∇Rn+m

Y XT )T

= a(Y −∇Rn+m

Y X⊥)T

= a

(
Y −

n∑

i=1

(∇Rn+m

Y X⊥, ei)ei

)

= a

(
Y +

n∑

i=1

(X⊥,∇Rn+m

Y ei)ei

)

= a

(
Y +

n∑

i=1

(X⊥, II(Y, ei))ei

)

= a(Y + IIX⊥(Y )), (4.2)

where IIX⊥ is defined as in the proof of Theorem 1.1. By tracing (4.2), we deduce that

∆f = a(−n− n(X,H)). (4.3)

Also, plugging (4.2) into the expression of T
[p]
f yields

T
[p]
f ω = a(pω + II

[p]

X⊥
ω),

where II
[p]
Z is the canonical extension of IIZ to p-forms as defined in (3.3). Hence, we deduce

〈T [p]
f ω, ω〉 = a

(
p|ω|2 + 〈II[p]

X⊥ω, ω〉
)
. (4.4)

In the following, we will bound the term 〈B[p]ωi, ωi〉 in Theorem 1.3 by using the results of
[S3]. For this, recall that A. Savo shows in [S3, Thm. 1] that for any isometric immersion

(Mn, g) → (Nn+m, g), the Bochner operator B[p] on p-forms of M splits as

B
[p] = B

[p]
ext +B

[p]
res,

where B
[p]
ext is the operator defined by

B
[p]
ext =

m∑

j=1

(
trace(IIνj )II

[p]
νj − II[p]νj ◦ II[p]νj

)
.

Here, {ν1, . . . , νm} is a local orthonormal frame of TM⊥, and the operator B
[p]
res is the operator

that satisfies

p(n− p)γN ≤ B
[p]
res ≤ p(n− p)ΓN ,

where γN and ΓN are respectively a lower bound and an upper bound for the curvature operator
of N . Hence for an isometric immersion M → (Rn+m, can), we deduce that

B
[p] = B

[p]
ext = II

[p]
nH −

m∑

j=1

II[p]νj ◦ II[p]νj . (4.5)

Inserting Equations (4.1), (4.3), (4.4) and (4.5) in Theorem 1.3, we deduce

Corollary 4.1. Let X : (Mn, g) → (Rn+m, can) be an isometric immersion and let f = a
|X|2

2
where a is a real positive number. For any p ∈ {0, . . . , n}, the eigenvalues of the drifting Hodge
Laplacian ∆f acting on p-forms on a domain Ω of M with Dirichlet boundary conditions satisfy
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for any k ≥ 1

k∑

i=1

(λk+1,p,f − λi,p,f)
α ≤ 4

n

k∑

i=1

(λk+1,p,f − λi,p,f)
α−1
(
λi,p,f −

∫

Ω
〈II[p]

(aX⊥+nH)
ωi, ωi〉dµf

+

m∑

j=1

∫

Ω
|II[p]νj ωi|

2dµf − ap+
na

2

−a
2

4

∫

Ω
|X|2|ωi|2dµf +

1

4

∫

Ω
|aX⊥ + nH|2|ωi|2dµf

)
,

for α ≤ 2. Also, we have

k∑

i=1

(λk+1,p,f − λi,p,f)
α ≤ 2α

n

k∑

i=1

(λk+1,p,f − λi,p,f )
α−1
(
λi,p,f −

∫

Ω
〈II[p]

(aX⊥+nH)
ωi, ωi〉dµf

+

m∑

j=1

∫

Ω
|II[p]νj ωi|

2dµf − ap+
na

2

−a
2

4

∫

Ω
|X|2|ωi|2dµf +

1

4

∫

Ω
|aX⊥ + nH|2|ωi|2dµf

)
,

for α ≥ 2.

The result in Corollary 4.1 generalizes the one in [Z1, Thm. 1.1] when taking a = 1
2 , α = 2 and

Ω =M being a domain in Rm. In this case, II = 0 and we get that

k∑

i=1

(λk+1,p,f − λi,p,f)
2 ≤ 4

n

k∑

i=1

(λk+1,p,f − λi,p,f)

(
λi,p,f −

p

2
+
n

4
− 1

16
min
Ω

(|X|2)
)
.

Moreover, Corollary 4.1 generalizes the result in [Z1, Thm 1.2] when taking for some integer
l > 1, the number a = l−1, α = 2 and (Mn, g) = (Rn−l×Sl(1), 〈, 〉Rn−l ⊕〈, 〉Sl) where 〈, 〉Sl is the
standard metric on the unit round sphere Sl(1) of curvature 1. Indeed, we take the immersion

M →֒ Rn−l ×Rl+1 where the second fundamental form is given by the matrix

(
0 0
0 Id

)
. Thus,

we have X⊥ = −ν and nH = trace(II) = lν and, therefore, aX⊥ + nH = ν. Also, using that

II[p]ω =
∑n

i=1 ei ∧ II(ei)yω for any p-form ω, we deduce by a straightforward computation that

−〈II[p]ω, ω〉+ |II[p]ω|2 =
n∑

i,j=n−l+1

|eiyejyω|2 ≤ p(p− 1)|ω|2.

Hence, we get that

k∑

i=1

(λk+1,p,f − λi,p,f)
2 ≤ 4

n

k∑

i=1

(λk+1,p,f − λi,p,f)
(
λi,p,f +

2n(l − 1) + 1− 4p(l − 1) + 4p(p− 1)

4

− (l − 1)2

4
min
Ω

(|X|2)
)
.

Corollary 4.1 also generalizes the one in [CP] on compact self-shrinkers. In this case, for a = 1,
we get that

k∑

i=1

(λk+1,p,f − λi,p,f)
2 ≤ 4

n

k∑

i=1

(λk+1,p,f − λi,p,f)
(
λi,p,f +

m∑

j=1

∫

Ω
|II[p]νj ωi|

2dµf

−p+ n

2
− 1

4
min
Ω

(|X|2)
)
.
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In the last part of this section, we will consider the case when f is the distance function from
some fixed point in M with respect to the Riemannian metric g on M . For this, fix a point
x0 ∈M and consider the distance function

dx0 : Ω → [0,∞[, dx0(x) = d(x0, x)

and ρx0(x) := 1
2dx0(x)

2. We recall from [Pe] that the distance function dx0 is smooth in the
complement of the cut locus of x0 and that its gradient is of norm 1 almost everywhere. Thus
we will choose a domain Ω ⊂M such that it is contained in this complement. Let us recall the
comparison theorem [Pe] (see also [HaSi]). For this, we consider for any l ∈ R, the function

Hl(r) =





(n− 1)
√
l cot(

√
lr), l > 0

n−1
r , l = 0

(n− 1)
√

|l| coth(
√

|l|r), l < 0.

Theorem 4.2. [Pe] Let (Mn, g) be a complete Riemannian manifold.

(1) If RicM ≥ (n− 1)l for some l ∈ R, then for every x0 ∈M , the inequalities

∆dx0(x) ≥ −Hl(dx0(x)), and ∆ρx0(x) ≥ −(1 + dx0(x)Hl(dx0(x)),

hold at smooth points of dx0 . Moreover, these inequalities hold on the whole manifold in
the sense of distributions.

(2) If the sectional curvature satisfies l1 ≤ KM ≤ l2 and γ is a minimizing geodesic starting
from x0 ∈M such that its image is disjoint to the cut locus of x0, then

∇2dx0(X,X) ≤ Hl1(t)

n− 1
g(X,X), and ∇2dx0(X,X) ≥ Hl2(t)

n− 1
g(X,X),

for X ⊥ γ̇(t) and ∇2dx0(γ̇(t), γ̇(t)) = 0, for t ∈ [0, L] for some L. As a consequence,
one has that

∇2ρx0(X,X) ≤ tHl1(t)

n− 1
g(X,X), and ∇2ρx0(X,X) ≥ tHl2(t)

n− 1
g(X,X),

for X ⊥ γ̇(t) and ∇2ρx0(γ̇(t), γ̇(t)) = 1.

We will now use Theorem 4.2 to compute the different terms in Theorem 1.3. We begin with
the case when RicM ≥ (n − 1)l for some l ∈ R on the manifold M . By taking f = aρx0 where
a > 0, we deduce that the inequalities

|df |2 = a2d2x0 , and ∆f(x) ≥ −a (1 + dx0(x)Hl(dx0(x))

hold in the sense of distributions. Therefore, we deduce from Theorem 1.3 the following

Corollary 4.3. Let X : (Mn, g) → (Rn+m, can) be an isometric immersion. Assume that
RicM ≥ (n− 1)l for some l ∈ R. Let x0 be fixed point in M and Ω a domain in the complement
of the cut locus of x0. Let f = aρx0 for some positive real number a > 0. The eigenvalues of the
drifting Hodge Laplacian ∆f acting on p-forms on Ω with Dirichlet boundary conditions satisfy
for any k ≥ 1

k∑

i=1

(λk+1,p,f − λi,p,f)
α ≤ 4

n

k∑

i=1

(λk+1,p,f − λi,p,f)
α−1
(
λi,p,f − δ1 +

1

4
δ2
)
,

for α ≤ 2, where δ1 = inf
Ω
(B[p] + T

[p]
f ) and δ2 is given by

δ2 = sup
x∈Ω

(
n2|H|2 + 2a(1 + dx0(x)Hl(dx0(x))− a2dx0(x)

2
)
.

Also, we have

k∑

i=1

(λk+1,p,f − λi,p,f)
α ≤ 2α

n

k∑

i=1

(λk+1,p,f − λi,p,f)
α−1
(
λi,p,f − δ1 +

1

4
δ2
)
,
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for α ≥ 2.

In the following, we will consider the case when the sectional curvature of M is bounded from
below by l1 and from above by l2. We let δ2 be the number given by

δ2 :=






sup
x∈Ω

(
n2|H |2 − 4a

(
(p− 1)

dx0
(x)Hl2

(dx0
(x))

n−1 + 1
)
+ 2a(1 + dx0

Hl1(dx0
)) − a2d2x0

)
, l2 ≤ 0

sup
x∈Ω

(
n2|H |2 − 4ap

dx0
(x)Hl2

(dx0
(x))

n−1 + 2a(1 + dx0
Hl1(dx0

))− a2d2
x0

)
, l2 > 0.

We have

Corollary 4.4. Let X : (Mn, g) → (Rn+m, can) be an isometric immersion. Assume that
l1 ≤ KM ≤ l2 for some l1, l2 ∈ R. Let Ω a domain in M such that Ω is contained in the
complement of the cut locus of x0 ∈ Ω. Let f = aρx0 for some positive real number a > 0. For
any p ∈ {0, . . . , n}, the eigenvalues of the drifting Hodge Laplacian ∆f acting on p-forms on a
domain Ω of M with Dirichlet boundary conditions satisfy for any k ≥ 1

k∑

i=1

(λk+1,p,f − λi,p,f)
α ≤ 4

n

k∑

i=1

(λk+1,p,f − λi,p,f)
α−1
(
λi,p,f −

∫

Ω
〈II[p]nHωi, ωi〉dµf

+
m−n∑

j=1

∫

Ω
|II[p]νj ωi|

2dµf +
1

4
δ2

for α ≤ 2. Also, we have

k∑

i=1

(λk+1,p,f − λi,p,f )
α ≤ 2α

n

k∑

i=1

(λk+1,p,f − λi,p,f)
α−1
(
λi,p,f −

∫

Ω
〈II[p]nHωi, ωi〉dµf

+

m−n∑

j=1

∫

Ω
|II[p]νj ωi|

2dµf +
1

4
δ2

for α ≥ 2.

Proof. We proceed as in [S1]. At any point x ∈ Ω \ {x0}, there is an orthonormal frame
{e1(x), . . . , en−1(x), en = ∇dx0(x)} such that ∇2ρx0 has the eigenvalues η1(x), . . . , ηn−1(x), 1.
By the comparison theorem 4.2, we get that for any j = 1, . . . , n − 1

dx0(x)Hl2(dx0(x))

n− 1
≤ ηj(x) ≤

dx0(x)Hl1(dx0(x))

n− 1
.

Therefore, we find that

|df |2 = a2d2x0 and ∆f ≥ −a(1 + dx0Hl1(dx0)).

Recall that the endomorphism T
[p]
f is by definition the sum of p distinct eigenvalues of ∇2f .

Hence, for any p-form ω, we get that

〈T [p]
f ω, ω〉 ≥





a
(
(p− 1)

dx0 (x)Hl2
(dx0 (x))

n−1 + 1
)
|ω|2, l2 ≤ 0

ap
dx0(x)Hl2

(dx0 (x))

n−1 |ω|2, l2 > 0.

This is because of
dx0(x)Hl2

(dx0 (x))

n−1 ≥ 1 if l2 ≤ 0 and
dx0 (x)Hl2

(dx0 (x))

n−1 ≤ 1 if l2 > 0. Replacing all

these inequalities in Theorem 1.3, we get the result after combining with Equation (4.5) for the
curvature term. �
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