

Global existence for a class of reaction-diffusion systems : a numerical study

Rajae MALEK

Moulay Ismail University, Faculty of Sciences, Meknes - Morocco

Ecology with Lotka-Volterra systems, chemistry with reaction-rate equations, multi-species diffusion of molecules and many other scientific fields lead to reaction-diffusion systems characterized by different diffusion coefficients and satisfying the two natural following properties :

- positivity of the solutions is preserved for all time ;
- the total mass of the components is controlled for all time.

In this presentation, we focus on reaction-diffusion systems modeling reversible chemical reactions. Such systems are of the form

$$(RDS) \begin{cases} 1 \leq i \leq m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1, u_2, \dots, u_m) & \text{in } (0, T) \times \Omega \\ \partial_\nu u_i(t, \mathbf{x}) = 0 & \text{on } (0, T) \times \partial\Omega \\ u_i(0, \mathbf{x}) = u_{0,i}(\mathbf{x}) \geq 0 & \text{in } \Omega \end{cases}$$

where for all $i \in \{1, \dots, m\}$, $d_i > 0$ and $f_i(u_1, \dots, u_m) = (p_i - q_i) \left(\prod_{j=1}^m u_j^{q_j} - \prod_{j=1}^m u_j^{p_j} \right)$.

In this talk, we will first recall the known global existence results and the open questions. Then, we will present a numerical study of some open questions. As we will see, our simulations confirm the known theoretical results and give rise to interesting conjecture.

This is a joint work with El Haj Laamri (Université de Lorraine) and Chérif Ziti (Université Moulay Ismail).

Références

- [1] Rajae Malek : *Études et Simulations Numériques de quelques problèmes présentant ou non des singularités*. Thèse soutenue le 28 mai 2022 à la faculté des Sciences, Université Moulay Ismail, Meknès (Maroc).
- [2] El Haj Laamri : *Global existence of classical solutions for a class of reaction-diffusion systems*, Acta Appl. Math. 115 (2011), no. 2, 153–165.
- [3] El Haj Laamri, Benoît Perthame : *Reaction-diffusion systems with initial data of low regularity*. J. Differential Equations 269 (2020), no. 11, 9310–9335.
- [4] El Haj Laamri, Michel Pierre : *Global existence for reaction-diffusion systems with non-linear diffusion and control of mass*. Ann. Inst. H. Poincaré-Anal. Non Linéaire 34 (2017), 571–591.
- [5] El Haj Laamri, Michel Pierre : *Stationary reaction-diffusion systems in L^1* . Math. Models Methods Appl. Sci. 28 (2018), no. 11, 2161–2190.
- [6] El Haj Laamri and Michel Pierre : *Stationary reaction-diffusion systems in L^1 revisited*. Discrete Contin. Dyn. Syst. Ser. S 14 (2021), no. 2, 455–464.
- [7] Michel Pierre, *Global Existence in Reaction-Diffusion Systems with Dissipation of Mass : a Survey*. Milan J. Math. 78, no. 2 (2010), 417–455.