Calcul explicite de la paramétrisation modulaire sur les corps de fonctions par les courbes modulaires de Drinfeld

Date/heure
17 novembre 2022
14:30 - 15:30

Oratrice ou orateur
Valentin Petit

Catégorie d'évènement
Séminaire de Théorie des Nombres de Nancy-Metz


Résumé

La paramétrisation modulaire dans le cas des corps de fonctions est remarquablement différente du revêtement modulaire classique sur le corps des nombres complexes et fait appel à de nombreux outils théoriques. \\
La situation est la suivante: soit $q$ une puissance d’un nombre premier, et soit $\mathbb{F}_q$ un corps à $q$ éléments. Soit $E$ une courbe elliptique non-isotriviale définie sur $\mathbb{F}_q(T)$ par une équation de Weierstrass de la forme
$$E\colon y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6, \quad a_i \in \mathbb{F}_q[T],$$
de mauvaise réduction multiplicative en la place $\infty=1/T$.
Alors la paramétrisation modulaire est une application rationnelle $\phi \colon \overline{M}_\Gamma \rightarrow E$, où $\overline{M}_\Gamma$ est la courbe modulaire de Drinfeld. Pour la construction de cette application nous avons besoin d’étudier les arbres de Bruhat-Tits et les fonctions thêta holomorphes.On s’intéressera plus particulièrement au calcul de l’image des pointes de $\overline{M}_\Gamma$ par $\phi$. Les résultats seront illustrés à travers quelques exemples.