TOMA Matei

Position Full professor
Teaching department
Faculté des Sciences et Technologies
Research group Geometry
Mail

IECL – Site de Nancy
Faculté des sciences et Technologies
Campus, Boulevard des Aiguillettes
54506 Vandœuvre-lès-Nancy

Email matei.toma@univ-lorraine.fr
Phone number 03 72 74 53 69
Office 505

    59. Mihai Pavel, Matei Toma
    Slope-semistability and moduli of coherent sheaves: a survey

    58. Mihai Pavel, Matei Toma
    Moduli spaces of slope-semistable sheaves with reflexive Seshadri graduations

    57. Mihai Pavel, Julius Ross, Matei Toma
    Uniform boundedness of semistable pure sheaves on projective manifolds

    56. Damien Mégy, Mihai Pavel, Matei Toma
    Semistability conditions defined by ample classes

    55. Ionuț Chiose, Matei Toma
    Positive currents on non-kählerian surfaces, II
    Rev. Roum. Math. Pures Appl. 68 (2023), 19-32.

    54. Ionuț Chiose, Matei Toma
    Positive currents on non-kählerian surfaces

    Math. Res. Lett. 30 (2023), 375-412.

    53. Julius Ross, Matei Toma
    Hodge-Riemann Relations for Schur Classes in the Linear and Kähler Cases

    Int. Math. Res. Not. IMRN 16 (2023), 13780–13816.

    52. Julius Ross, Matei Toma
    On Hodge-Riemann Cohomology Classes

    in Birational Geometry, Kaehler-Einstein Metrics and Degenerations, Springer Proceedings in Mathematics & Statistics, Volume 409, Springer 2023, edited by Ivan Cheltsov, Xiuxiong Chen, Ludmil Katzarkov and Jihun Park, 763-793.

    51. Julius Ross, Matei Toma
    Hodge-Riemann bilinear relations for Schur classes of ample vector bundles
    Ann. Sci. Éc. Norm. Supér. 56 (2023), 197-241.

    50. Matei Toma
    Bounded sets of sheaves on relative analytic spaces
    Ann. Henri Lebesgue 4 (2021), 1531-1563

    49. Alexandra Otiman, Matei Toma
    Hodge decomposition for Cousin groups and for Oeljeklaus-Toma manifolds

    Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XXII (2021), 485-503

    48. Daniel Greb, Benjamin Sibley, Matei Toma, Richard Wentworth
    Complex algebraic compactifications of the moduli space of Hermitian-Yang-Mills connections on a projective manifold
    Geom. Topol. 25 (2021) 1719–1818

    47. Matei Toma
    Properness criteria for families of coherent analytic sheaves

    Algebr. Geom. 7 (2020), 486-502

    46. Daniel Greb, Matei Toma
    Moduli spaces of sheaves that are semistable with respect to a Kähler polarisation
    J. Éc. polytech. Math. 7 (2020), 233–261

    45. Daniel Greb, Julius Ross, Matei Toma
    A Master Space for Moduli Spaces of Gieseker-Stable Sheaves
    Transform. Groups 24 (2019), 379–401

    44. Daniel Greb, Julius Ross, Matei Toma
    Semi-continuity of Stability for Sheaves and Variation of Gieseker Moduli Spaces
    J. Reine Angew. Math. 749 (2019), 227–265

    43. Nicholas Buchdahl, Andrei Teleman, Matei Toma
    On the Donaldson-Uhlenbeck compactification of instanton moduli spaces on class VII surfaces

    Q. J. Math. 69 (2018), 1423-1473

    42. Nicholas Buchdahl, Andrei Teleman, Matei Toma
    A continuity theorem for families of sheaves on complex surfaces
    J. Topol. 10 (2017), 995-1028

    41. Arvid Perego, Matei Toma
    Moduli spaces of bundles over nonprojective K3 surfaces
    Kyoto J. Math. 57 (2017), 107–146

    40. Daniel Greb, Matei Toma
    Compact moduli spaces for slope-semistable sheaves
    Algebr. Geom. 4 (2017), 40-78

    39. Daniel Greb, Julius Ross, Matei Toma
    Variation of Gieseker Moduli Spaces via Quiver GIT

    Geom. Topol. 20 (2016), 1539–1610

    38.  Daniel Greb, Julius Ross, Matei Toma
    Moduli of vector bundles on higher-dimensional base manifolds – construction and variation

    Internat. J. Math. 27 (2016), 1650054, DOI: 10.1142/S0129167X16500543

    37. Matei Toma
    Bounded sets of sheaves on compact Kaehler manifolds
    J. Reine Angew. Math. 710 (2016), 77–93

    36. Rahim Moosa, Matei Toma
    Essential saturation of OT-manifolds
    Bull. Math. Soc. Sci. Math. Roumanie 58 (2015), 311-316

    35. Marian Aprodu, Matei Toma
    Boundedness for some rationally connected threefolds in P^6

    Comm. Algebra 42 (2014), 3876-3882

    34. Ionuț Chiose, Matei Toma
    On compact complex surfaces of Kähler rank one
    Amer. J. Math. 135 (2013), 851-860

    33. Marian Aprodu, Ruxandra Moraru, Matei Toma
    Two-dimensional moduli spaces of vector bundles over Kodaira surfaces

    Adv. Math. 231 (2012), 1202-1215

    32. Matei Toma
    Vector bundles on blown-up Hopf surfaces
    Cent. Eur. J. Math. 10 (2012), 1356-1360

    31. Matei Toma
    A note on the cone of mobile curves

    C. R. Math. Acad. Sci. Paris 348 (2010), 71-73

    30. Luis Solá Conde, Matei Toma
    Maximal rationally connected fibrations and movable curves
     Ann. Inst. Fourier (Grenoble), 59 (2009), p. 2359-2369

    29. Matei Toma
    Fibrés vectoriels stables par rapport à une polarisation mobile
    Revue de l’Institut Elie Cartan Nancy 19 (2009), 233-238

    28. Rahim Moosa, Ruxandra Moraru, Matei Toma
    An essentially saturated surface not of Kaehler-type
    Bull. London Math. Soc. 40 (2008), 845-854

    27. Matei Toma
    On the Kaehler rank of compact complex surfaces
    Bull. Soc. Math. de France 136 (2008), 243-260

    26. Karl Oeljeklaus, Matei Toma
    Logarithmic moduli spaces for surfaces of class VII
    Math. Ann. 341 (2008), 323-345

    25. Stefan Kebekus, Luis Solá Conde, Matei Toma
    Rationally connected foliations after Bogomolov and McQuillan
    J. Algebraic Geom. 16 (2007), 65-81

    24. Karl Oeljeklaus, Matei Toma
    Non-Kaehler compact complex manifolds associated to number fields
    Ann. Inst. Fourier Grenoble 55 (2005), 161-171

    23. Georges Dloussky, Karl Oeljeklaus, Matei Toma
    Class VII surfaces with b_2 curves
    Tohoku Math. J. 55 (2003), 283-309

    22. Marian Aprodu, Matei Toma
    Une note sur les fibrés holomorphes non-filtrables
    C. R. Acad. Sci. Paris 336 (2003), 581-584

    21. Andrei Teleman, Matei Toma
    Holomorphic vector bundles on non-algebraic surfaces
    C. R. Acad. Sci. Paris 334 (2002), 383-388 

    20. Marian Aprodu, Vasile Brînzanescu, Matei Toma
    Holomorphic vector bundles on primary Kodaira surfaces
    Math. Z. 242 (2002), 62-73

    19. Matei Toma
    Compact moduli spaces of stable sheaves over non-algebraic surfaces
    Documenta Math. 6 (2001), 11-29

    18. Karl Oeljeklaus, Matei Toma, Dan Zaffran
    Une caractérisation des surfaces d’Inoue-Hirzebruch
    Ann. Inst. Fourier Grenoble 51 (2001), 1243-1257

    17. Georges Dloussky, Karl Oeljeklaus, Matei Toma
    Surfaces de la classe VII admettant un champ de vecteurs, II
    Comment. Math. Helv. 76 (2001), 640-664

    16. Georges Dloussky, Karl Oeljeklaus, Matei Toma
    Surfaces de la classe VII admettant un champ de vecteurs 

    Comment. Math. Helv. 75 (2000), 255-270

    15. Matei Toma
    A short proof of a theorem of Camacho and Sad 

    Enseign. Math. 45 (1999), 311-316

    14. Matei Toma
    Stable bundles with small $c_2$ over 2-dimensional complex tori

    Math. Z. 232 (1999), 511-525

    13. Matei Toma
    Stable bundles with small second Chern classes on surfaces
    ibidem, Stuttgart, 2000, ISBN 3-89821-035-9 

    12. Paltin Ionescu, Matei Toma
    On very ample vector bundles on curves 

    Int. J. of Math. 8 (1997), 633-643

    11. Matei Toma
    Stable bundles on non-algebraic surfaces giving rise to compact moduli spaces 
    C. R. Acad. Sci. Paris 323 (1996), 501-505

    10. Matei Toma
    Birational models for varieties of Poncelet curves
    Manuscripta Math. 90 (1996), 105-119

    9. Matei Toma
    Three-dimensional scrolls in P^6
    Arch. Math.  65 (1995), 444-448 (Abstract)

    8. Paltin Ionescu, Matei Toma
    Boundedness for some special families of embedded manifolds 
    Contemporary Mathematics 162 (1994), 215-225

    7. Georg Schumacher, Matei Toma
    Moduli of Kaehler Manifolds Equipped with Hermite-Einstein Vector Bundles 
    Rev. Roumaine Math. Pures Appl. 38 (1993), 703-719

    6. Georg Schumacher, Matei Toma
    The Petersson-Weil metric on the moduli space of Hermite-Einstein bundles and its curvature
    Math. Ann. 293(1992), 101-108.

    5. Matei Toma
    Holomorphic vector bundles on non-algebraic surfaces
    Dissertation, Bayreuth 1992

    4. Matei Toma
    On the existence of simple reducible vector bundles on complex surfaces of algebraic dimension zero
    Publ. RIMS, Kyoto Univ. 27 (1991), 533-550.    

    3. Matei Toma 
    A class of holomorphic vector bundles on two-dimensional tori
    Rev. Roumaine Math.Pures Appl. 36 (1991), 309-317  (Abstract)

    2. Matei Toma
    Une classe de fibrés vectoriels holomorphes sur les 2-tores complexes
    C. R. Acad. Sci. Paris 311 (1990), 257–258.

    1. Matei Toma A class of non-algebraic threefolds
    Ann. Inst. Fourier Grenoble 39 (1989), 239-250