Differential geometry seminar

Upcoming presentations

Séminaire commun de géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Past presentations

Une inégalité pour la norme l_1 des variétés complètes (An l_1-norm inequality for complete manifolds) (en visio)

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 13 February 2023 15:30-16:30 Lieu : Oratrice ou orateur : Caterina Campagnolo Résumé :
Dans les années 80, Gromov a introduit un nouvel invariant topologique, le volume simplicial. Il a montré l’existence d’une connexion profonde entre cet invariant topologique et la géométrie des variétés au travers de son “inégalité principale”, reliant le volume simplicial au volume sous certaines conditions de courbure.
Depuis, la communauté a essayé de généraliser et d’améliorer cette relation, en affaiblissant les hypothèses sur la courbure, en étendant ou en améliorant l’inégalité.
Dans un travail avec Shi Wang, nous étendons les résultats de Besson-Courtois-Gallot sur la norme l_1 de la classe fondamentale d’une variété fermée à toutes les classes d’homologie d’une variété complète. Nos inégalités sont plus précises que celles de Gromov et s’expriment en termes de l’exposant critique de la variété.
Je définirai les objets nécessaires, donnerai le contexte et enfin les idées principales de la preuve.
\  \

Abstract : In the 80’s, Gromov introduced a new topological invariant, the simplicial volume of a manifold. He showed its deep connection with geometry by proving his “Main inequality”, relating the simplicial volume to the volume of the manifold under some curvature assumptions.

Since then, the community has tried to generalize and enhance this relation by weakening the curvature assumptions, extending, or improving the inequality.
In joint work with Shi Wang, we extend the results of Besson-Courtois-Gallot about the l_1-norm of the fundamental class of a closed manifold to all homology classes of a complete manifold. Our inequalities are sharper than Gromov’s original ones and are expressed in terms of the critical exponent of the manifold.
I will define all necessary objects, give some context and the main ideas of the proof.

Séminaire Commun de Géométrie - l'espace des métriques kählériennes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 February 2023 14:00-16:00 Lieu : Oratrice ou orateur : Eleonora Di Nezza Résumé :

L’espace des métriques kähleriennes.

Un problème classique en géométrie kählerienne est de trouver des métriques kähleriennes spéciales, cet à dire avec des bonnes propriétés de courbure. En relation avec ce problème, l’étude de l’espace des métriques kähleriennes, que l’on denote H, devient cruciale.

Cet espace à été étudié à partir des année 80 quand Mabuchi a introduit un produit scalaire sur chaque espace tangent. À partir de cela, une famille de distances d_p, p>=1, on été définie sur H en démontrant que (H, d_p) est une espace métriques mais pas complet.
Dans la première partie cette exposé on donnera un panorama de tout ce que on sait sur cet espace. Puis parlera plus en détail de ses géodésiques, son complété métrique et des distances d_p.
Les résultats présentés dans cette exposé sont basés sur des deux travaux, un en collaboration avec Vincent Guedj et l’autre en collaboration avec Chinh Lu.


Ligne d'étirement de Thurston pour surfaces à bord

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 January 2023 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Valentina Disarlo Résumé :

En 1986 William Thurston a introduit une distance Lipschitz sur
l’espace de Teichmueller de surfaces fermées ou avec cusps. Avec Daniele
Alessandrini on a étendu cette théorie à l’espace de Teichmueller des
surfaces à bord géodésique. On construit une famille de géodésiques pour
l’espace de Teichmueller des surface à bord, qui généralisent les lignes
d’étirement construites par Thurston. Comme corollaire, on trouve une
nouvelle classe de géodésique dans l’espace de Teichmueller des surfaces
fermées avec la distance Lipschitz. Ce travail est en collaboration avec
Daniele Alessandrini (Columbia University).


Fonctions zêta dynamiques et torsion de Reidemeister

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 23 January 2023 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Léo Bénard Résumé :
La torsion de Reidemeister est un invariant topologique, célèbre entre autres pour avoir permis de distinguer des quotients finis de la sphères S^3, les espaces lenticulaires, qui ont le même type d’homotopie mais qui ne sont pas homéomorphes. C’est un invariant subtil associé à une paire (M,\rho), pour \rho une représentation du groupe fondamental de M. En particulier il est difficile d’avoir de l’intuition sur ce que cet invariant décrit. 
 
La conjecture de Fried prédit que cet invariant est un « compte régularisé » du nombre d’orbites fermées d’un champ de vecteur  X sur M, comptées avec un poids donné par \rho.
Cette conjecture est maintenant un théorème dans de nombreux cas, majoritairement quand \rho est unitaire et X un flot géodésique.
J’expliquerai un travail en commun avec Jan Frahm et Polyxeni Spilioti, dans lequel nous avons prouvé cette conjecture pour M le fibré unitaire tangent d’une surface hyperbolique, sans hypothèses restrictives sur \rho.

Structures localement conformément produit (Locally conformally product structures)

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 January 2023 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Brice Flamencourt Résumé :

Les structures localement conformément produit (LCP) apparaissent sur les variétés conformes compactes lorsque l’on considère une connexion qui est localement la connexion de Levi-Civita d’une métrique, mais pas globalement. Le relèvement d’une telle connexion au revêtement universel de la variété LCP est la connexion de L-C d’une métrique produit, donnant sont nom à la structure.

Dans cet exposé, on décrira les propriétés fondamentales de ces structures, et on expliquera comment se construisent les exemples connus de variétés LCP, afin d’initier une classification. On étudie certains invariants naturels, et on exhibe également un lien avec la théorie des corps de nombres.

Abstract : The locally conformally product structures (LCP) arise on compact conformal manifolds when we consider a connection which is locally but not globally the Levi-Civita connection of a metric. The lift of such a connection to the universal cover of the LCP manifold is the L-C connection of a product metric, explaining the name of this structure.

In this talk, we will expose the properties of the LCP structures and we will construct some examples of LCP manifolds in order to initiate a classification. We introduce several invariants on LCP manifolds and we show that there exists a link with number fields theory.


Séminaire Commun de Géométrie - Finitude des groupes hyperboliques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 January 2023 14:00-16:00 Lieu : Oratrice ou orateur : Gilles Courtois Résumé :
Titre:
Théorème de finitude pour les groupes hyperboliques
Résumé:
Les théorèmes de finitude en géométrie riemannienne ont une longue histoire.  En voici un
exemple particulier : “Il existe un nombre fini de variétés différentiables compactes sans bord de dimension n portant une métrique de courbure sectionnelle et diamètre Diam vérifiant -a2 ≤ Sec <0 et Diam ≤ D.
A la fin des années 80, M. Gromov a introduit une notion de courbure négative pour les espaces métriques qui englobe une classe d’espaces beaucoup plus vaste que les variétés riemanniennes. On peut alors envisager  des résultats de finitude pour ces espaces.
Le but de l’exposé est d’expliquer la notion d’espace et de groupe hyperbolique au sens de Gromov et de décrire le théorème suivant : (en collaboration avec G. Besson, S. Gallot et A. Sambusetti)
“Le nombre de groupes sans torsion, non élémentaires, δ-hyperboliques et d’entropie inférieure à H
est fini et majoré par un nombre qui dépend de δ et H.”
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Comme chaque séminaire commun de géométrie, il sera constitué d’un premier exposé de type “colloquium” de 14h à 14h45, puis d’une pause thé-gâteaux de 14h45 à 15h15, puis de la suite de l’exposé de niveau recherche de 15h15 à 16h. Venez nombreux !

Vacances - pas de séminaire

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 26 December 2022 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :

Vacances - pas de séminaire

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 19 December 2022 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :

Comportement asymptotique des espaces-temps spatialement homogènes

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 12 December 2022 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : François Béguin Résumé :

Les espaces-temps spatialement homogènes sont des modèles d’univers en Relativité Générale, où l’équation d’Einstein se réduit à une équation différentielle sur l’espace des métriques invariantes à gauche sur un groupe de Lie. J’expliquerai comment expliciter cette équation différentielle, puis comment l’étudier. Nous verrons que sa dynamique est étonnament riche et complexe. Mon but final sera de présenter un résultat de T. Dutilleul et moi-même qui affirme — en simplifiant grossièrement — que, si on choisit un espaces-temps spatialement homogène « au hasard », alors, avec une probabilité positive, la courbure de cet espace-temps oscille de manière chaotique quand on s’approche de sa singularité initiale.


Séminaire Commun de Géométrie - Régularité C^1 pour les minimiseurs du problème de Griffith

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 5 December 2022 14:00-16:00 Lieu : Oratrice ou orateur : Antoine Lemenant Résumé :

Le problème de Griffith est un problème où l’on minimise la mesure de surface d’un certain “ensemble de discontinuité libre” qui intervient dans un modèle de propagation de fissure en élasticité linéarisée. Il s’agit d’une variante vectorielle de la célèbre fonctionnelle de Mumford-Shah, correspondant au cas scalaire et pour laquelle la régularité des minimiseurs est bien connue depuis les années 90. L’analogue vectoriel (Griffith) est beaucoup plus difficile à appréhender en raison de problèmes techniques que l’on tentera d’expliquer. Cependant, certains résultats partiels de régularité C^1 qui ont été obtenus récemment en collaboration avec Jean-François Babadjian (Paris-Saclay) et Flaviana Iurlano (Sorbone Université) en dimension 2, puis généralisés en dimension supérieure en collaboration avec Camille Labourie (Erlangen-Nuremberg). Le but final de l’exposé sera de présenter ces résultats récents. Avant cela, dans une première partie, nous présenterons un panorama rapide de la théorie de régularité classique en partant du problème de Plateau, puis en faisant le lien avec ce qui est connu (ou encore ouvert) sur Mumford-Shah, pour enfin aboutir à Griffith dans une seconde partie de l’exposé.


1 2 3 4 5 6 7 8 9 10 11 12