Colloquium

Presentation

The Lorraine Mathematics Colloquium is the monthly event for all members of the laboratory. It takes place in Metz and Nancy.

The organizers are Renata Bunoiu and Hervé Oyono Oyono in Metz and Youness Lamzouri in Nancy.

The talk is given by a speaker recognized for his or her scientific qualities and ability to speak in front of a large audience of mathematicians. This talk usually takes place on Tuesday at 4:30 pm, is preceded by a tea for all the members of the laboratory at 4 pm and is followed by a dinner in town for those who wish it.

Upcoming presentations

Past presentations

Histoire de positions : les mathématiques pures et les mathématiques appliquées au XIXe siècle et dans la première moitié du XXe siècle

Catégorie d'évènement : Colloquium Date/heure : 15 February 2000 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Jean Dhombres

Au XVIIIe siècle, il n’y a pas d’opposition notable, ou conceptuelle, entre les mathématiques pures et les mathématiques appliquées. Les expressions existent, mais il y a plutôt division ternaire avec en plus la catégorie des mathématiques mixtes.

Les titres des premiers journaux mathématiques créés, en France comme en Allemagne, évo- quent cependant les mathématiques pures et appliquées. On ne s’entend plus très bien sur la physique mathématique. L’exemple de Fourier est net : à partir des années 1850, il est rangé chez les physiciens par les mathématiciens et chez les mathématiciens par les physiciens.

À la fin du XIXe siècle, l’opposition prend une tournure forte en Allemagne, peu manifestée en France; mais on pourrait facilement prendre Hilbert et Poincaré comme personnages incarnant des différences nationales. Des études statistiques sur les publications renseignent mal sur les différences.

C’est donc une évolution peu uniforme des mentalités que je voudrais retracer en utilisant l’intégrale de Fourier comme fil historique directeur, et en évoquant les positions de mathé- maticiens comme Norbert Wiener et Élie Cartan pour le XXe siècle.


Quelques Éléments de Mathématiques Appliqués à l’Informatique Graphique

Catégorie d'évènement : Colloquium Date/heure : 18 January 2000 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Jean-Claude Paul

À mesure que les problèmes posés augmentent en complexité, les modèles et algorithmes développés en informatique graphique tendent à être fondés sur des bases mathématiques mieux as- surées. Pour générer numériquement des objets naturels ou virtuels, par exemple, on tend à modéliser des formes à l’aide de primitives géometriques 3D de plus en plus riches. Pour que l’aspect visuel de ces objets soit très réaliste, on simule aujourd’hui leur comportement à la lumière, à partir des lois de l’optique géométrique dans un certain domaine de longueur d’ondes.

Nos travaux sur la première classe de problèmes (objets géométriques) portent actuellement sur les quadriques, leur génération, leur intersection, leur simplification, la formalisation des relations de visibilité entre ce type de surfaces. Nos travaux sur le réal-

isme visuel des objets et environnements 3D nous ont conduits à formaliser le problème de la propagation de la lumière par une équation intégrale de Fredholm de second type, dite équa- tion de radiosité, et ainsi à explorer, pour la résoudre, quelques résultats récents de l’analyse fonctionnelle.


Rêves Éveillés : De la Physique Mathématique à la Théorie des Nombres

Catégorie d'évènement : Colloquium Date/heure : 14 December 1999 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Pierre Cartier

Une des idées maîtresses de Grothendieck et Deligne est l’importance de la monodromie en Géométrie – une méthode qui a son origine dans des problèmes concrets liés aux équations différentielles. Pour des raisons liées à son histoire personnelle, Grothendieck avait une grande défiance à l’égard de la physique.

Il est étonnant que les développements de ces dix dernières années aient amené un rapprochement spectaculaire de la Géométrie à la Grothendieck avec la Physique Mathématique, en grande partie par les profonds travaux de Drinfeld. Un ensemble impressionnant de méthodes, de problèmes et de conjectures s’est mis en place, touchant à la Topologie des surfaces, les invariants des nœuds, les systèmes d’équations différentielles, la théorie des groupes et des algèbres de Lie.

Le développement le plus récent concerne une classe de nombres réels “effectifs”, en partic- ulier les séries multizêtas d’Euler et Zagier. On touche là aux problèmes les plus profonds concernant les nombres transcendants.


Classic Geometry from Conformal Quantum Field Theory

Catégorie d'évènement : Colloquium Date/heure : 2 November 1999 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Werner Nahm

Many geometric problems concerning spaces of three of more dimensions have been solved by using the spaces as background for suitable physical systems. In particular one can use equations for electromagnetism or more complex gauge fields, as in the work of the Fields medalists Donaldson and Witten.

Though quantum field theory and string theory do not yet have a fully developed math- ematical foundation, they have started to be used for the same purpose. One example is the enumeration of Riemann spheres embedded in spaces of three complex dimensions by using the quantum phenomenon of mirror symmetry. The latter is based on the fact that different geometries can occur by sending the parameters of the same quantum field theory to different limits, even in cases where the geometries cannot be continuously connected in a classical way.

So far, the conformally invariant quantum field theories in two dimension have been the most useful ones. They also are the ones for which the mathematical formulation is most satisfac- tory. One of them has become famous for having the Fischer-Griess monster as symmetry group (as explored by Borcherds, who this year got the Fields medal). Further work along these lines should lead to explicit formulas for Einstein metrics on many spaces.

Traditionally, mathematicians have regarded quantum field theories as magical black boxes. To make full use of the new insights, they should be reinvented as elegant and well defined structures within the mainstream of mathematics.


Continous and Semi-discrete Waves

Catégorie d'évènement : Colloquium Date/heure : 19 October 1999 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Enrique Zuazua

In this lecture we shall present some recent results on the analysis of [latex]1-d[/latex] models of wave propagation in semi-discrete media. We shall mainly focus on the effect of the spurious high frequency oscillations on properties like the speed of propagation of waves and the boundary observability. The later arises naturally in the context of Control Theory and Inverse Problems.


Random matrices: some current developments

Catégorie d'évènement : Colloquium Date/heure : 18 May 1999 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Robert Stanton

In classical quantum mechanics the eigenvalues of the Hamiltonian provide labels for the states of the system. Physicists observed many years ago that in a large interval of a rel- atively large eigenvalue the distribution of the eigenvalues in the interval resembled the distribution of eigenvalues of a random matrix having symmetry properties similar to the Hamiltonian. Moreover, performing an ensemble average, then varying the size of the ma- trices, the resulting limiting distribution had remarkable similarities to the statistics of the physical system.

In recent years, Katz and Sarnak have done similar statistical analyses of random matrices from families of the classical compact Lie groups and applied the results to algebraic ge- ometry of curves over finite fields. While Rudnick, Sarnak et al have studied the statistical properties of zeroes of L-functions over number fields.

In this lecture I shall present some of the historical motivation for these investigations, de- scribe some of the ideas used to obtain the limiting distribution, and explain the applications to number theory in a particular case.


Théorie des nœuds et théorie quantique des champs

Catégorie d'évènement : Colloquium Date/heure : 6 April 1999 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Pierre Vogel

Les nœuds sont des objets géométriques très simples. Ce sont des courbes simples dessinées dans l’espace usuel. Cependant la théorie des nœuds a connu ces dernières années une véri- table explosion.

Plusieurs nouveaux invariants de nœuds ont été découverts à l’initiative de V. Jones en 1985. Parmi ces invariants, le crochet de Kauffman est sans contexte le plus simple à définir. Il s’avère cependant très riche. Il se prète très facilement à des calculs graphiques et permet de distinguer de nombreux nœuds. Comme beaucoup d’invariants de nœuds et d’entrelacs, il permet de construire toute une famille d’invariants de variétés de dimension 3: les invariants de Reshetikhin et Turaev.

Ces invariants ont un certain nombre de propriétés géométriques, en particulier en ce qui concerne les modifications de type chirurgical. Par contre, pour bien comprendre leur com- portement par rapport à des opérations de type découpage et recollement, l’introduction des théories quantiques des champs topologiques s’avère fort utile. Ces théories construites directement à partir du crochet de Kauffman sont des objets mathématiques extrêmement riches qui témoignent de nombreuses propriétés des variétés de dimension 3 ainsi que des cobordismes entre surfaces.


Géométrie modulaire et systèmes intégrables, un exemple

Catégorie d'évènement : Colloquium Date/heure : 16 March 1999 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Krzysztof Gawedzki

Dans les développements des dernières années liés aux invariants des nœuds et des 3-variétés, ainsi que dans la théorie conforme des champs, le rôle central a été joué par une connexion plate, dite de Knizhnik-Zamolodchikov. Cette connexion peut être interprétée comme une quantification des modèles intégrables introduits par Nigel Hitchin en 1987 et de leurs généralisations.

La construction de Hitchin, que je passerai en revue, donne lieu à une vaste famille de systèmes intégrables à partir d’une théorie de jauge bi-dimesionnelle. Les plus simples des systèmes de Hitchin peuvent être explicités à l’aide de la géométrie des espaces de modules des fibrés holomorphes sur des courbes complexes.


Le temps dans les systèmes de reconnaissance de formes et de raisonnement automatique

Catégorie d'évènement : Colloquium Date/heure : 16 February 1999 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Jean-Paul HATON

Le temps joue un rôle fondamental dans la modélisation des processus perceptifs et cognitifs en vue de la conception et de la mise en œuvre de machines “intelligentes”. Il intervient sous au moins deux formes :

• comme variable régissant l’évolution d’un phénomène : c’est le cas des systèmes d’interprétation de signaux à évolution temporelle (sonar, radar, etc.) et de reconnaissance automatique de la parole,
• comme partie intégrante d’un raisonnement : le raisonnement temporel permet d’intégrer

le passé dans un processus de prise de décision et de planifier des actions pour le futur.

Nous présenterons différents modèles et formalismes qui ont été développés pour traiter ces trois aspects. En ce qui concerne le traitement de phénomènes à évolution temporelle, nous parlerons des modèles stochastiques (modèles de Markov cachés, modèles de trajectoires) et des modèles neuromimétiques (TDNN, réseaux récurrents, etc.) et nous illustrerons leurs principes avec des exemples en reconnaissance de la parole. Pour le raisonnement temporel, nous présenterons les modèles actuels et leurs limites (logiques temporelles modales et réi- fiées), avec des applications à la conduite de procédés industriels.

Nous concluons en donnant quelques perspectives sur ces différentes approches du temps et leurs combinaisons dans les systèmes du futur.


9 10 11 12 13 14