PDE and applications seminar | Metz

Upcoming presentations

Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (1/2)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :

Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (2/2)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 17 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :

Groupe de Travail : Titre à venir (brouillon)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 February 2025 10:45-12:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Tillmann Wunzbacher Résumé :

Attention : horaires inhabituels, le séminaire aura lieu de 10h45 à 12h15 (une séance d’une heure et demie) et sera précédé d’une pause café-gâteau de 10h15 à 10h45


Séminaire : Titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Gaudiello (Università della Campania “L. Vanvitelli”) Résumé :

Séminaire : Titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Olivier Guibé (Université de Rouen) Résumé :

Abonnement iCal

Past presentations

Energie fondamentale du Laplacien magnétique dans des ouverts à  coins

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 23 May 2014 14:00-15:00 Lieu : Oratrice ou orateur : Monique Dauge Résumé :

Energie fondamentale du Laplacien magnétique dans des ouverts à  coins

L’opérateur de Laplace magnétique s’écrit
$$
(-ihnabla+A)^2
$$
o๠$A$ est un potentiel magnétique et $h$ un paramètre destiné à  tendre vers 0. Cet opérateur est complété par les conditions de Neumann sur le bord du domaine. Le domaine est supposé appartenir à  une certaine classe géenérale d’ouverts à  coins. Cette classe contient en particulier les polyèdres, les domaines coniques et les domaines réguliers.

Le comportement de la première valeur propre de l’opérateur magnétique quand $hto0$ est gouverné par une hiérarchie de problèmes modèles posés sur les cones tangents au domaine. Nous explorons les propriétés de ces problèmes modèles en dimension 3 d’espace (continuité, semi-continuité, existence de fonctions propres gén’eralisées). Nous démontrons des formules asymptotiques avec reste pour la première valeur propre magnétique en fonction de $h$.

Les bornes inférieures sont obtenues à  l’aide d’une partition IMS à  deux échelles, alors que les bornes supérieures sont établies grâce à  une nouvelle construction de quasimodes qualifiés d’assis (sitting) ou glissants (sliding) selon les propriétés spectrales des problèmes modèles.

Exposé basé sur l’article en commun avec Virginie Bonnaillie-Noà«l et Nicolas Popoff,
“Ground state energy of the magnetic Laplacian on general three-dimensional corner domains”, disponible sur arXiv, http://fr.arxiv.org/abs/1403.7043


Les problèmes inverses de Calderon et de Gel'fand-Calderon en dimension deux

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 May 2014 14:00-15:00 Lieu : Oratrice ou orateur : Matteo Santacesaria Résumé :

Dans cette exposé je vais présenter des résultats concernant les problèmes de Gel’fand-Calderon et de conductivité inverse (problème de Calderon). Il s’agit de deux problèmes inverses de valeurs au bord avec différents applications, notamment dans le domaine médicale, géophysique et dans la tomographie océanique. Le problème de Calderon consiste à  déterminer une conductivité électrique dans un domaine à  partir de l’opérateur tension-à -courant (Dirichlet-to-Neumann) au bord. Dans le problème de Gel’fand-Calderon la quantité à  reconstruire est un potentiel dans l’équation de Schrodinger, étant donné l’opérateur Dirichlet-to-Neumann associé à  énergie fixée. Je vais présenter le premier résultat de stabilité globale en dimension deux pour le problème de Gel’fand-Calderon scalaire et multi-canal (matriciel). Ensuite je vais parler d’un algorithme de reconstruction stable et rapidement convergent pour le même problème dans le cas 2D multi-canal, avec applications à  l’étude du problème en 3D . Comme derniers résultats je vais montrer des nouvelles estimations de stabilité globale pour les deux problèmes qui dépendent explicitement de la régularité et de l’énergie. J’expliquerai notamment comment la stabilité augment à  hautes énergies.


Uniform resolvent convergence for strip with fast oscillating boundary

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 25 April 2014 14:00-15:00 Lieu : Oratrice ou orateur : Giuseppe Cardone Résumé :

In a planar infinite strip with a fast oscillating boundary we consider an elliptic operator assuming that both the period and the amplitude of the oscillations are small. On the oscillating boundary we impose Dirichlet, Neumann or Robin boundary condition. In all cases we describe the homogenized operator, establish the uniform resolvent convergence of the perturbed resolvent to the homogenized one, and prove the estimates for the rate of convergence. These results are obtained as the order of the amplitude of the oscillations is less, equal or greater than that of the period. It is shown that under the homogenization the type of the boundary condition can change.


Rétroprojection filtrée et imagerie laser tri-dimensionnelle

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 4 April 2014 14:00-15:00 Lieu : Oratrice ou orateur : Jean Baptiste Bellet Résumé :

Dans cet exposé, on rappelle le problème de la tomographie et sa résolution par des méthodes de type inversion de la transformée de Radon. En particulier, la célèbre méthode de Feldkamp, Davis et Kress (FDK) est présentée. Puis, nous interprétons l’usage de cette méthode en imagerie laser 3D, avec résultats numériques sur des données industrielles à  l’appui.


Strongly oscillating boundaries

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 28 March 2014 14:00-15:00 Lieu : Oratrice ou orateur : Antonio Gaudiello Résumé :

In this talk, starting from the paper of R. Brizzi et J.P. Chalot on problems in domains with strongly oscillating boundaries, I shall recall the contribution with D. Blanchard on this subject and I shall present recent results obtained with O. Guibé.

A domain with strongly oscillating boundary is a domain whose boundary
presents numerous asperities. The asperities have fixed height, a size
depending on a small parameter $varepsilon$ and $varepsilon$-periodic
structure.

Boundary-value problems in such a domain arise in many fields of biology,
physics and engineering sciences. It is often impossible to approach these
problems directly with numerical methods, because the rough boundary
requires a large number of mesh points in its neighborhood. Thus, the
computational cost associated to such a problem grows rapidly when
$varepsilon$ gets smaller. Moreover, it can occur that the required
discretization step becomes too small for the machine precision. Then, the
goal is to replace the problem, when the periodicity $varepsilon$ gets
smaller, with a model in a “more regular” domain $Omega$ which can be
numerically solved.


Existence et localisation de solutions pour un problème faisant intervenir l'exposant critique de Sobolev

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 March 2014 14:00-15:00 Lieu : Oratrice ou orateur : Rejeb Hadiji Résumé :

On étudie l’existence de solutions de certains problèmes faisant intervenir l’exposant critique de Sobolev et avec un poids. On étudie également la multiplicité des solutions du problème dans le cas o๠l’ensemble des minima du poids admet plusieurs composantes connexes. On s’intéresse aussi au cas o๠cet ensemble possède une seule composante connexe et une topologie complexe.


Etude spectrale des guides d'ondes torsadés

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 March 2014 14:00-15:00 Lieu : Oratrice ou orateur : Philippe Briet Résumé :

Dans cet exposé je présenterai différents résultats concernant l’existence (ou la non-existence) de valeurs propres discrètes pour le Laplacien défini sur un domaine tubulaire donné à  partir d’un guide droit déformé par torsion le long son axe longitudinal.


Homogenization of Rigid Suspensions with Highly Oscillatory Velocity-Dependent Surface Forces

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 28 February 2014 14:00-15:00 Lieu : Oratrice ou orateur : Bogdan Vernescu Résumé :

We study particulate flows or suspensions of solid particles in a viscous incompressible fluid in the presence of highly oscillatory, velocity dependent, surface forces. The flow at a small Reynolds number is modeled by the Stokes equations coupled with the motion of rigid particles. The objective is to perform homogenization for the given suspension and obtain an equivalent description of a homogeneous (effective) medium and determine the effective viscosity and the macroscopic effect of the surface forces.


Opérateurs paraboliques dégénérés de type Kolmogorov présentant une condition de contrôle géométrique.

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 February 2014 14:00-15:00 Lieu : Oratrice ou orateur : karine Beauchard Résumé :

Schemas compacts sur la grille 'Cubed-Sphere'

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 February 2014 14:00-15:00 Lieu : Oratrice ou orateur : Jean Pierre Croisille Résumé :

La ‘Cubed-Sphere” est un maillage de la sphere base sur le cube qui la contient. Ce maillage presente des avantages pour les methodes numeriques. Nous presentons une famille d’approximations de type “schemas compacts” sur ce maillage. Les operateurs surfaciques gradient, divergence, Laplacien sont approches a l’ordre 4. Cela permet d’envisager des schemas naturels pour des modeles importants pour la climatologie tels que les equations de Saint-Venant sur la sphere en rotation. Un point complet sera presente sur les resultats obtenus sur ces questions.


13 14 15 16 17 18 19 20