Séminaire de groupes algébriques et géométrie complexe

Date/heure
23 janvier 2023
14:00 - 15:00

Oratrice ou orateur
Thomas Gobet

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

Titre: Groupes de tresses et algèbres de Hecke de normalisateurs de sous-groupes de réflexions

Résumé: Étant donné un groupe de réflexions complexe (fini) et un sous-groupe de ce dernier engendré par des réflexions, on peut se demander sous quelles hypothèses ce sous-groupe admet un complément à l’intérieur de son normalisateur. Dans le cas des groupes de Coxeter et de leurs sous-groupes paraboliques, Howlett a montré qu’un tel complément existe toujours et a donné un algorithme pour en déterminer un système de générateurs. Taylor et Muraleedaran ont montré que les sous-groupes paraboliques des groupes de réflexions complexes finis admettent également un complément. Lorsque le sous-groupe n’est pas parabolique, l’existence de complément n’est en général pas garantie.

En lien avec l’étude des algèbres de Yokonuma-Hecke, Marin a défini un groupe que l’on peut considérer comme le groupe de tresses d’un normalisateur d’un sous-groupe de réflexions. Celui-ci contient le groupe de tresses du sous-groupe de réflexions comme sous-groupe normal, fournissant une suite exacte courte qui relève celle induite par l’inclusion du sous-groupe de réflexions dans son normalisateur. On peut également construire l’analogue d’une algèbre de Hecke pour le normalisateur du sous-groupe de réflexions. Dans les cas où la suite exacte induite par l’inclusion du sous-groupe de réflexions dans son normalisateur est scindée, on peut se demander si cette propriété se relève à la suite exacte impliquant le groupe de tresses du normalisateur. Si c’est le cas, on obtient une décomposition en produit semi-direct de l’algèbre de Hecke du normalisateur, ce qui permet notamment d’en construire une base standard.

Dans un premier temps, nous rappellerons les définitions et constructions des objets considérés. Nous expliquerons pourquoi, dans le cas d’un groupe de Coxeter fini et d’un sous-groupe de réflexions arbitraire, le groupe de tresses du normalisateur se décompose toujours en un produit semi-direct (travail en commun avec Anthony Henderson et Ivan Marin). Si le temps le permet, nous évoquerons la situation plus générale des groupes de réflexions complexes finis. Dans ce cas, les suites exactes mentionnées plus haut ne sont pas scindées en général, mais sous de bonnes hypothèses sur le corps de base et l’ensemble des paramètres, il existe toujours une décomposition en produit semi-direct de l’algèbre de Hecke du normalisateur (travail en commun avec Ivan Marin).