Presentation
The Lorraine Mathematics Colloquium is the monthly event for all members of the laboratory. It takes place in Metz and Nancy.
The organizers are Renata Bunoiu and Hervé Oyono Oyono in Metz and Youness Lamzouri in Nancy.
The talk is given by a speaker recognized for his or her scientific qualities and ability to speak in front of a large audience of mathematicians. This talk usually takes place on Tuesday at 4:30 pm, is preceded by a tea for all the members of the laboratory at 4 pm and is followed by a dinner in town for those who wish it.
Upcoming presentations
Past presentations
Quantum chaos, eigenvalue statistics and the Fibonacci sequence
Catégorie d'évènement : Colloquium Date/heure : 19 January 2021 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :Zeev Rudnick (Université de Tel-Aviv)
One of the outstanding insights in the field of “Quantum Chaos” is a conjectural description of local statistics of the energy levels of simple quantum systems according to crude properties of the dynamics of classical limit, such as integrability, where one expects Poisson statistics, versus chaotic dynamics, where one expects Random Matrix Theory statistics. These insights were obtained by physicists in the last quarter of the 20-th century. However, mathematicians are far behind in understanding the scope and validity of this theory. The first part of the lecture will be dedicated to an introduction to these conjectures. In the second part, I will describe more recent work on statistics of the minimal gap between the eigenvalues for one such simple integrable system, a rectangular billiard having irrational squared aspect ratio. When the aspect ratio is the “golden ratio”, the problem involves some curious and entertaining properties of the Fibonacci sequence.
Chimie des fibres de Milnor
Catégorie d'évènement : Colloquium Date/heure : 15 December 2020 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :Patrick Popescu-Pampu (Université de Lille)
Toute hypersurface singulière dans une variété lisse est localement une limite d’hypersurfaces lisses : il suffit de la regarder comme niveau d’une fonction. C’est aussi le cas, pour une raison analogue, des intersections complètes d’hypersurfaces. Lorsqu’on ne s’intéresse qu’à un germe d’intersection complète au voisinage de l’un de ses points singuliers, les parties des hypersurfaces lisses qui tendent vers lui s’appellent les fibres de Milnor du germe. Ce sont des variétés lisses, compactes, à bord, bien définies à difféomorphisme près. Bien qu’elles aient fait l’objet d’études incessantes depuis que John Milnor les a introduites en 1968, leur caractérisation parmi les variétés lisses est encore largement ouverte. Walter Neumann et Jonathan Wahl conjecturèrent en 2004 que pour les germes en épissure qu’ils avaient introduits quelques années auparavant, les fibres de Milnor pouvaient être reconstruites à partir de celles de germes en épissure élémentaires. Un peu comme une molécule se laisse décomposer chimiquement en atomes. J’expliquerai le contexte qui les a menés à cette conjecture, ainsi que les grandes lignes de sa preuve, que j’ai obtenue avec Angelica Cueto et Dmitry Stepanov.
Introduction aux billards dans les pavages
Catégorie d'évènement : Colloquium Date/heure : 22 September 2020 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :Olga Paris-Romaskevich (CNRS, Université d’Aix-Marseille)
En mathématiques, nous savons jouer au billard dans une table de n’importe quelle forme.
Je parlerai dans mon exposé d’un nouveau jeu encore moins conventionnel — jouer au billard à l’intérieur d’un pavage.
Un tel système dynamique s’avère être lié aux problèmes classiques (et moins classiques) en dynamique (dynamique des échanges d’intervalles) et en topologie (problème de Novikov des sections planes des surfaces 3-périodiques).
Je vais me concentrer sur le cas du billard dans un pavage triangulaire périodique — celui que je comprends le mieux !
——————————
Devoir-maison (pas très dur) avant l’exposé :
visionner un film d’animation magnifique fait par Ofir David en suivant le lien :
Positivité et sommes de carrés
Catégorie d'évènement : Colloquium Date/heure : 4 February 2020 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :Olivier Benoist (École Normale Supérieure de Paris)
Le 17ème problème de Hilbert, résolu en 1927 par Artin, affirme que tout polynôme réel qui ne prend que des valeurs positives est une somme de carrés. La positivité des sommes de carrés est donc la seule source d’inégalités polynomiales ! Je présenterai l’histoire de cette question, des développements récents, et des problèmes ouverts d’énoncés élémentaires.
Randonnée arithmétique
Catégorie d'évènement : Colloquium Date/heure : 21 January 2020 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :Emmanuel Kowalski (ETH, Zurich)
Les objets arithmétiques d’apparence les plus simples, par exemple les
nombres entiers, ou des sommes finies de racines de l’unité, semblent
souvent avoir un comportement imprévisible, mais qui obéit
statistiquement à des règles précises. L’exposé présentera différents
exemples de tels phénomènes ainsi que des applications récentes.
Percolation de premier passage et sous-additivité
Catégorie d'évènement : Colloquium Date/heure : 12 November 2019 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :Marie Theret (Université Paris Nanterre)
Considérons le graphe de sommets les points de Z^d muni des arêtes reliant les sommets à distance euclidienne 1. Le modèle de percolation de premier passage sur Z^d consiste à associer aux arêtes de ce graphe une famille de variables aléatoires indépendantes et de même loi, à valeurs positives. La variable associée à une arête représente le temps nécessaire pour traverser l’arête, ce qui permet de modéliser des phénomènes de propagation (propagation d’une information dans un réseau social, d’une maladie au sein d’une population, de l’eau à l’intérieur d’une roche poreuse). Nous présenterons une propriété qui joue un rôle central dans l’étude de ce modèle : la sous-additivité.
Tores plats, sphères réduites et fractales lisses.
Catégorie d'évènement : Colloquium Date/heure : 11 June 2019 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :Vincent Borrelli (Université de Lyon)
Au milieu des années 50, John Nash énonce un théorème de “plongements isométriques” dont les conséquences sont déconcertantes. Il implique en effet que l’on peut réaliser un tore plat dans l’espace ambiant c’est-à-dire identifier les bords opposés d’une feuille de papier sans créer le moindre pli ni la moindre intersection. Il implique également l’existence d’une application qui envoie la sphère unité à l’intérieur d’une boule de rayon arbitrairement petit tout en préservant les longueurs des courbes tracées à sa surface. Ces objets, appelés tore plat 3D et sphère réduite, sont restés longtemps mystérieux jusqu’à ce qu’une théorie inventée par Mikhail Gromov, l’intégration convexe, ouvre la voie à leur construction explicite et à leur visualisation. Dans cet exposé, nous nous intéresserons à cette construction ainsi qu’à la structure géométrique en “fractale lisse” qu’elle a révélée.
Pseudodifferential operators of Toeplitz type
Catégorie d'évènement : Colloquium Date/heure : 28 May 2019 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :Joerg Seiler (Turin)
There are many examples of calculi/algebras of pseudodifferential operators that have been designed to analyze different sorts of elliptic partial differential operators, in particular to characterize their Fredholm property and regularity properties of solutions of associated pde’s in suitable function spaces, using a parametrix construction within the algebra. This ranges from pseudodifferential operators on smooth closed manifolds (where ellipticity of an operator is characterized by the invertibility of its homogeneous principal symbol) to operator algebras for singular manifolds like manifolds with conical points, edges, and corners (where ellipticity is characterized by a hierarchy of principal symbols associated with the stratification of the manifold). Also boundary value problems can be treated in such a way. L. Boutet de Monvel developed a calculus for smooth manifolds with boundary which allows to treat classical boundary conditions like Dirichlet or Neumann conditions. Ellipticity in this calculus corresponds to the classical Shapiro-Lopatinskij ellipticity. This calculus has been extended by Schulze to also cover so-called global projection conditions, for example spectral boundary conditions for Dirac operators.
It will be discussed how parts of Schulze’s construction can be obtained in a general framework of so-called operators of Toeplitz type associated with a given algebra of pseudodifferential operators and that a corresponding approach also applies to complexes of operators. Fredholm property in this context means finite dimension of all associated cohomology spaces. For smooth manifolds with boundary it turns out that every complex of differential operators, which is fibre-wise exact on the level of homogeneous principal symbols, can be complemented with boundary conditions (i.e., a complex-isomorphism to a complex of operators on the boundary) in such a way that the resulting mapping cone is a Fredholm complex. There is a topological obstruction which decides whether these boundary conditions can be chosen from the usual Boutet de Monvel calculus or when they must involve global projection conditions. This extends and makes precise results due to A. Dynin. Parts of this talk are joint work with B.-W. Schulze.
Assistants de preuve : un outil pour les mathématiciens ?
Catégorie d'évènement : Colloquium Date/heure : 21 May 2019 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :Sébastien Gouëzel
Les assistants de preuve sont des outils informatiques qui permettent de formaliser et vérifier tous les détails d’une preuve. Alors qu’ils sont développés et utilisés depuis longtemps par des informaticiens (notamment pour prouver qu’un programme fait bien ce qu’il attend de lui), leur adoption par des mathématiciens est beaucoup plus récente. Je décrirai à travers mon expérience personnelle ce que ces outils permettent déjà de faire, notamment pour des résultats niveau recherche, mais aussi les difficultés que pose leur utilisation pour un mathématicien. Et j’espère aussi dissiper quelques fantasmes !
Dynamiques sur les graphes aléatoires unimodulaires.
Catégorie d'évènement : Colloquium Date/heure : 2 April 2019 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :François Baccelli (ENS Paris)
Résumé :
L’exposé portera sur les dynamiques déterministes sur des graphes aléatoires infinis. Une telle dynamique peut être vue comme un ensemble de règles de navigation sur les noeuds du graphe, qui sont des fonctions de la seule géométrie locale du graphe enraciné. Nous nous concentrerons sur des graphes aléatoires qui sont unimodulaires (vérifient les équations de transport de masse) et sur les règles de navigation qui sont covariantes (invariantes par isomorphismes de graphes enracinés).
Nous donnerons une classification de ces dynamiques basée sur les propriétés de leurs variétés stables. Cette classification est fondée sur l’identification d’une famille d’arbres aléatoires critiques dont les propriétés fondamentales seront présentées.
Ces notions seront illustrées par des exemples issus de la théorie des processus ponctuels, des processus de branchement, de la théorie des graphes aléatoires infinis et de celle des processus aléatoires.
Travail en collaboration avec M.-O. Haji-Mirsadeghi et A. Khezeli.