Évènements

Estimations de Strichartz pour l'équation de Schrödinger sur un domaine borné et applications

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 9 novembre 2021 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tristan Robert Résumé :

Les estimations de type Strichartz sont un outil fondamental dans l’étude des EDP dispersives, en particulier pour leur application dans l’étude de modèles non-linéaires. Après avoir rappelé brièvement comment obtenir ces estimations pour l’équation de Schrödinger sur l’espace Euclidien et leur utilité dans la résolution du problème de Cauchy pour une équation semi-linéaire, nous verrons comment traiter le cas d’un domaine compact, d’abord général puis les améliorations possibles dans le cas d’un tore. Si le temps le permet, nous montrerons également comment les estimations de Strichartz semi-classiques peuvent être utiles dans l’analyse de problèmes dispersifs quasi-linéaires.


Équation de Schrödinger logarithmique : dynamique en temps long, régime dispersif

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 novembre 2021 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Guillaume Ferriere (IRMA, Université de Strasbourg) Résumé :

Nous nous intéresserons dans cet exposé à l’équation de Schrödinger logarithmique (abrégé en logNLS), équation non-linéaire introduite en 1976 par Białynicki-Birula et Mycielski dans un modèle de mécanique des ondes linéaires en physique. Longtemps oublié par les mathématiciens, cette équation présente une dynamique originale, parfois surprenante comparée à celle des équations de Schrödinger non-linéaires usuellement étudiées, dont les non-linéarités sont régulières voire lisses (typiquement du type puissance). J’exposerai quelques propriétés de logNLS qui attestent de cette originalité, en me focalisant sur les résultats de comportement en temps long. En particulier, sera présenté plus en profondeur le cas du régime dispersif, dont la compréhension du comportement en temps grand est très avancée : la vitesse de dispersion est plus rapide d’un facteur logarithmique et le carré du module de la solution renormalisée converge faiblement dans L^1 vers une gaussienne universelle, ne dépendant pas des conditions initiales. Je montrerai que cette description peut être améliorée par une vitesse de convergence explicite et optimale en distance de Wasserstein-1 (aussi appelé métrique de Kantorovich-Rubinstein), indépendante de la constante semi-classique, et que cette convergence est également valable à la limite semi-classique.