Évènements

La limite locale des arbres pondérés exponentiellement par la hauteur

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 14 décembre 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Meltem Unel (Orsay) Résumé :
Le cas le plus simple et peut-être le plus naturel des limites locales des arbres est Uniform Infinite Planar Tree: on commence par la suite des mesures de probabilité uniforme \nu_N dont le support est l’ensemble des arbres plans enracinés de taille N et on étudie la limite faible \nu de cette suite, dont le support est l’ensemble des arbres plans enracinés de taille infinie.
Une modification naturelle dans la recherche des limites différentes est de pondérer les arbres : est-ce que la nouvelle suite des mesures \rho_N, par rapport à laquelle la valuer d’un arbre de taille N est proportionnelle à son poids, admet une limite faible ?
Dans cet exposé, on considère des arbres planes enracinés dont la distribution est uniforme pour une hauteur h et une taille N fixée et dont la dépendance à la hauteur est de forme exponentielle, \exp(-\mu h), pour \mu réel. En définissant le poids total de ces arbres de taille N fixe comme Z^{\mu}_N, on détermine son comportement asymptotique pour N grand, pour \mu réel quelconque. Finalement, on identifie la limite locale des mesures de probabilité correspondantes et trouve une transition à \mu=0 d’une phase à une seule épine à une phase à plusieurs épines (backbone). En conséquence, il y a une transition dans le taux de croissance du volume des boules autour de la racine en fonction du rayon, passant d’une croissance linéaire pour \mu < 0 à la croissance quadratique familière à \mu=0 et à une croissance cubique pour \mu > 0.

Zéros de combinaisons linéaires de fonctions $L$ de Dirichlet sur la droite critique

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 14 décembre 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Jérémy Dousselin (IECL) Résumé :

Soient $N\geq 1$ et $\chi_1,…,\chi_N$ des caractères de Dirichlet primitifs, pairs et deux à deux distincts, de conducteur $q_1$, …, $q_N$ respectivement. Posons

\[F(s):=\sum_{j=1}^N c_j\varepsilon_jq_j^{s/2}L(s,\chi_j),\]

où $(\varepsilon_j)$ sont des complexes de module 1 tels que $F$ satisfasse une équation fonctionnelle et $c_j\in\mathbb R^*$. Nous distinguons les zéros de $F$ en deux catégories : des zéros dits triviaux, impliqués par cette équation fonctionnelle, et des zéros dits non-triviaux, confinés dans une bande verticale $V$. Nous notons $N(T)$ le nombre de zéros de $F$ dans le rectangle $\{z\in V:\Im(z)\in[0,T]\}$ et $N_0(T)$ le nombre de ces zéros étant sur la droite critique.

A la fin des années 90, Selberg donna les grandes lignes d’un raisonnement prouvant qu’une proportion positive de zéros non-triviaux de $F$ sont sur la droite critique, en établissant que

\[\kappa_F:=\liminf_T\frac{N_0(2T)-N_0(T)}{N(2T)-N(T)}\geq \frac c{N^2}\]

pour un $c>0$. Nous proposons alors d’améliorer et d’expliciter cette minoration, en démontrant en particulier que

\[\kappa_F\geq \frac{2.16\times 10^{-6}}{N\log N},\]

pour tout $N$ assez grand.