A critical point theorem in bounded sets and localization of Nash equilibrium solutions

Date/heure
13 avril 2018
11:00 - 12:00

Oratrice ou orateur
Radu Precup

Catégorie d'évènement
Séminaire EDP, Analyse et Applications (Metz)


Résumé

The localization of a critical point of minimum type of a smooth functional is obtained in a bounded convex conical set defined by a norm and a concave upper semicontinuous functional. The technique is then used for the localization and multiplicity of Nash equilibrium solutions of nonvariational systems. Applications are given to periodic problems.