Date/heure
15 novembre 2021
14:00 - 16:00
Oratrice ou orateur
Alba Malaga
Catégorie d'évènement Séminaire de géométrie complexe
Résumé
On peut obtenir un tore en recollant abstraitement les deux paires de côtés opposés d’un carré, sans le déformer. Un tel tore vient alors naturellement fourni d’une métrique à courbure constante nulle, c’est pourquoi on l’appelle tore plat carré. Cette construction se généralise en prenant n’importe quel parallélogramme à la place du carré. Modulo une relation d’équivalence, tous les tores plats vivent alors sur la courbe modulaire.
Dans cet exposé, je présenterai une construction assez simple qui permet d’obtenir tous les tores de la courbe modulaire comme des polyèdres et j’esquisserai une demonstration de ce fait. Je présenterai aussi des variations de la construction qui permettent d’obtenir des exemples de réalisations polyédrales de surfaces de translation.Ceci est un travail en collaboration avec Samuel Lelièvre (Orsay) et Pierre Arnoux (Marseille).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Comme tous les « Séminaires communs de géométrie », ce séminaire comprend deux séances : de 14h à 15h45, un exposé « colloquium » s’adressant à tous les mathématiciens, puis de 15h15 à 16h un exposé « recherche » qui approfondira ce qui aura été présenté au premier exposé.