Actions des groupes de Schottky sur les variétés rationnelles homogènes

Date/heure
8 février 2016
15:30 - 16:30

Oratrice ou orateur
Christian Miebach

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

En 1877 Schottky a construit des actions libres et propres du
groupe libre de rang $r$ sur un domaine de la sphère de Riemann qui ont pour quotient une surface de Riemann compacte de genre $r$.
En 1984 Nori a généralisé cette construction à  tout espace projectif complexe de dimension impaire dans le but d’obtenir des variétés complexes compactes dont le groupe fondamental est libre. Là¡russon ainsi que Seade et Verjovsky ont étudié des propriétés analytiques et géométriques de ces variétés quotients, comme leur dimensions algébrique
et de Kodaira, et leurs déformations. Je parlerai d’un travail récent avec Karl Oeljeklaus (Aix-Marseille Université) o๠nous avons considéré la question aux quelles variétés rationnelles homogènes on peut généraliser la construction de Nori. De plus, j’expliquerai les résultats que nous avons obtenus sur la géométrie des nouveaux exemples de variétés quotients.