An image characterization for the Poisson transform on homogeneous line bundles over Noncompact Complex Grassmann Manifolds. Lien externe[Résumé] – Reporté

Date/heure
19 mars 2020
15:30 - 16:30

Oratrice ou orateur
Abdelhamid Boussejra

Catégorie d'évènement
Séminaire Théorie de Lie, Géométrie et Analyse


Résumé

Let (X=G/K) be a noncompact complex Grassmann manifold of rank (r). Let (tau_l) be a character of (K), and (Ktimes_M{C}) the homogeneous line bundle associated with (tau_{l_{mid M}}). We give an image characterization for the Poisson transform (P_{lambda,l}) of (L^2)-sections of (Ktimes_M{C}). More precisely, for real and regular spectral parameter (lambda) in (mathfrak{a}^ast) we prove that (P_{lambda,l}) is an isomorphism from (L^2(Ktimes_M{C})) onto a space of joint eigensections (F) of the algebra of (G)-invariant differential operators on (Gtimes_K{C}) that satisfy (displaystylesup_{R>1}frac{1}{R^r}int_{B(R)}mid F(g)mid^2, {rm d}g<infty.) This generalizes a conjecture by Strichartz which corresponds to (tau_l) trivial.\