Action du groupe d’automorphismes sur la jacobienne de la quartique de Klein.

Date/heure
21 mars 2024
14:15 - 15:15

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Anne Moreau (Orsay)

Catégorie d'évènement
Séminaire Théorie de Lie, Géométrie et Analyse


Résumé

Selon une conjecture de Bernstein et Schwarzman, le quotient d’un espace affine complexe par un groupe cristallographique irréductible engendré par des réflexions est un espace projectif à poids. La conjecture fut démontrée par Schwarzman et Tokunaga-Yoshida pour presque tous tels groupes en dimension 2, et par Looijenga, Bernstein-Schwarzman et Kac-Peterson pour ceux de type Coxeter en toute dimension.

Dans cet exposé je présenterai un travail en commun avec Dimitri Markushevich dans lequel nous démontrons la conjecture pour l’unique groupe cristallographique engendré par des réflexions en dimension 3 dont la partie linéaire est le groupe simple de Klein, selon la classification de Popov. La preuve repose sur le calcul de la fonction de Hilbert de l’algèbre des invariants des fonctions thêta. Depuis la publication de notre travail, Rains a proposé une approche de la conjecture en toute généralité.