Date/heure
4 novembre 2025
10:45 - 11:45
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Ansgar Jüngel (TU Wien)
Catégorie d'évènement Séminaire Équations aux Derivées Partielles et Applications (Nancy)
Résumé
More than 50 years ago, Moore predicted that the number of transistors on a microchip doubles every two years. This exponential growth is approaching its physical limit, highlighting the need for alternative computing paradigms. One promising avenue is neuromorphic computing, which aims to emulate the structure and function of the human brain. A key enabling technology is the memristor, a nonlinear resistor with memory. Memristors are capable of mimicking the dynamic conductance behavior of biological synapses, making them well-suited for implementing energy-efficient neural networks.
This talk focuses on the mathematical analysis of three-species drift-diffusion equations for memristors. We investigate the existence and boundedness of global-in-time weak solutions. The mathematical difficulties originate from the three-species situation and the different types of boundary conditions. These issues are addressed by combining free energy estimates with local and global compactness arguments. Additionally, we analyze memristor models coupled with electrical networks. One-dimensional numerical simulations capture the characteristic hysteresis behavior in the current-voltage curves, which are a fingerprint for memristive devices.