Date/heure
5 juin 2025
14:15 - 15:15
Oratrice ou orateur
Antonio Miti (Rome)
Catégorie d'évènement Séminaire Théorie de Lie, Géométrie et Analyse
Résumé
In « $L_\infty$-algebras and higher analogues of Dirac structures and Courant algebroids » (arXiv:1003.1004), Marco Zambon constructed an explicit $L_\infty$-morphism between the Courant $r=1$-Lie algebra of a smooth manifold $M$, twisted by a closed 2-form $\sigma$, and the untwisted Courant $r=2$-Lie algebra of $M$. He left open the question of whether similar canonical $L_\infty$-morphisms exist in higher degrees — that is, between the Courant $r$-Lie algebra twisted by a closed $(r+1)$-form $\sigma$ and the untwisted Courant $(r+1)$-Lie algebra. In this talk, we present a general framework that naturally accounts for the existence of such morphisms for arbitrary $r$. This is joint work with Domenico Fiorenza.