Date/heure
30 novembre 2010
16:30 - 17:30
Catégorie d'évènement Colloquium
Résumé
Michael Harris
Le Lemme fondamental, démontré par Ngô Bao Châu en 2007-2008, est une identité explicite entre intégrales de fonctions sur certaines paires de groupes p-adiques, le long des classes de conjugaison. Il a été formulé en tant que conjecture par Langlands et Shelstad en 1987, avec deux principales motivations : de stabiliser la formule de traces d’Arthur et Selberg, afin d’établir les conjectures de fonctorialité de Langlands dans certains cas, et de déterminer les représentations de groupes de Galois de corps de nombres réalisées dans la cohomologie de variétés de Shimura. Je décrirai les représentations galoisiennes construites à l’aide du Lemme fondamental et j’indiquerai comment les méthodes de Wiles permettent de les utiliser pour résoudre certains problèmes traditionnels en théorie algébrique des nombres, notamment la conjecture de Sato-Tate.