Basmajian-type inequalities for maximal representations

Date/heure
24 avril 2017
14:00 - 15:00

Oratrice ou orateur
Beatrice Pozzetti

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé

An injective homomorphism of the fundamental group of an hyperbolic surface in the symplectic group Sp(2n,R) is a maximal representation if it maximizes the so-called Toledo invariant. Maximal representations form interesting and well studied components of the character variety generalizing the Teichm »uller space, that is encompassed in the case n=1. Basmajian’s equality allows to compute the length of the boundary of a hyperbolic surface in term of the lengths of the orthogeodesics: geodesic segments orthogonal to the boundary at both endpoints. In joint work with Federica Fanoni we provide a generalization of this result to the setting of maximal representations. »