Limiting behavior of minimizing p-harmonic maps in 3d as p goes to 2 with finite fundamental group.

Date/heure
19 novembre 2024
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Bohdan Bulanyi (Université de Bologne)

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

The presentation will focus on some new results concerning the limiting behavior of minimizing $p$-harmonic maps from a bounded Lipschitz  domain $\Omega \subset \mathbb{R}^{3}$ to a compact connected Riemannian manifold without boundary and with finite fundamental group as $p \nearrow 2$. We prove that there exists a closed set $S_{*}$ of finite length such that minimizing $p$-harmonic maps converge to a locally minimizing harmonic map in $\Omega \setminus S_{*}$. We prove that locally inside $\Omega$ the singular set $S_{*}$ is a finite union of straight line segments, and it minimizes the mass in the appropriate class of admissible chains. Furthermore, we establish local and global estimates for the limiting singular harmonic map. Under additional assumptions, we prove that globally in $\overline{\Omega}$ the set $S_{*}$ is a finite union of straight line segments, and it minimizes the mass in the appropriate class of admissible chains, which is defined by a given boundary datum and $\Omega$. In this talk, I will try to give an overview of these results. This is a joint work with Jean Van Schaftingen and Benoît Van Vaerenbergh.