Calcul de classes d’isogénie de surfaces abéliennes sur $\mathbb{Q}$

Date/heure
10 octobre 2024
14:30 - 15:30

Lieu
Salle Döblin

Oratrice ou orateur
Jean Kieffer

Catégorie d'évènement
Séminaire de Théorie des Nombres de Nancy-Metz


Résumé

Si l’on se fixe une variété abélienne définie sur un corps de nombre $K$, alors sa classe d’isogénie (l’ensemble des variétés abéliennes qui lui sont isogènes sur $K$) est un ensemble fini: c’est l’un des théorèmes fondamentaux de géométrie arithmétique dus à Faltings. Dans le cas particulier des courbes elliptiques définies sur $K = \mathbb{Q}$, on sait exactement à quoi ressemblent ces classes d’isogénies, mais une telle classification est hors de portée en dimensions supérieures. Dans cet exposé, je parlerai d’un algorithme efficace de calcul de classes d’isogénie dans le cas « le plus simple » des surfaces abéliennes sur $\mathbb{Q}$, fondé sur l’utilisation des fonctions thêta de Riemann. Cet algorithme a permis pour la première fois de calculer de nombreux exemples de classes d’isogénies. Il s’agit d’un travail en commun avec Raymond van Bommel, Shiva Chidambaram et Edgar Costa.