Comment sont répartis les nombres rationnels ?

Date/heure
13 février 2020
09:15 - 10:15

Oratrice ou orateur
Rémi Peyre

Catégorie d'évènement
Groupe de travail Probabilités et Statistique


Résumé

L’ensemble des nombres rationnels pouvant s’écrire avec un dénominateur ≤ N, pour une grande valeur de N, est un ensemble discret de R dont la densité globale est de l’ordre de 3/Ï€2 à— N2 (ou 1/2 à— N2 si on compte avec multiplicité). Si on regarde R depuis un point tiré au sort uniformément (modulo 1) et qu’on “zoome” pour voir les détails d’échelle 1/N2, la loi de l’ensemble de points aléatoire ainsi obtenu converge-t-elle vers une limite lorsque N tend vers l’infini ? — cette limite représentant alors, moralement, le comportement local des nombres rationnels de dénominateur borné.

Je me suis penché récemment sur cette question, qui apparemment n’avait jamais été regardée jusque-là , et j’ ai montré qu’effectivement il y avait bien un processus-limite. Ce processus-limite n’est pas réellement aléatoire : il s’apparente plutôt à  un système dynamique (observé sous sa mesure d’équilibre), système dynamique que je préciserai et dont j’établirai l’ergodicité. Pour démontrer tout cela, il faudra utiliser un outil de théorie de nombres très intéressant : l’arbre de Stern-Brocot.

L’exposé montrera également une simulation dynamique de ce fameux processus