Complétude asymptotique pour des équations de Klein-Gordon superradiantes et applications à  la métrique de De Sitter Kerr

Date/heure
29 avril 2016
14:00 - 15:00

Oratrice ou orateur
Dietrich Häfner

Catégorie d'évènement
Séminaire EDP, Analyse et Applications (Metz)


Résumé

L’équation de Klein-Gordon peut être écrite dans un cadre assez général sous la forme $(partial_t^2-2ikpartial_t+h)u=0$, o๠$h$ et $k$ sont des opérateurs autoadjoints. Lorsque $h$ n’est pas positif l’énergie naturelle conservée $Vert partial_tuVert^2+(hu,u)$ n’est pas positive et en général aucune énergie positive conservée n’est disponible. De tels phénomènes apparaissent lorsque l’équation de Klein-Gordon est couplée à  un champ électrique fort o๠lorsqu’elle provient d’une géométrie lorentzienne sans champ de Killing global de type temps. Dans ce cas on parle souvent de superradiance. Un exemple typique est la métrique de De Sitter Kerr qui décrit des trous noirs en rotation. Nous allons décrire comment on peut obtenir dans un tel cadre des résultats de complétude asymptotique et donner quelques applications à  la métrique de De Sitter Kerr. Il s’agit d’un travail en collaboration avec Christian Gérard et Vladimir Georgescu.