Date/heure
19 juin 2018
10:45 - 11:45
Oratrice ou orateur
Claire David
Catégorie d'évènement Séminaire Équations aux Derivées Partielles et Applications (Nancy)
Résumé
Le laplacien occupe, au sein de l’analyse mathématique des équations aux dérivées partielles, une place centrale. Récemment, les travaux de Jun Kigami, poursuivis par Robert S. Strichartz, ont permis la construction d’un opérateur de même nature, défini localement, sur des domaines présentant un caractère fractal. Curieusement, le cas du graphe de la fonction de Weierstrass, introduite en 1872 par K. Weierstrass, continue partout, mais nulle part dérivable, et qui présente des propriétés d’auto-similarité, ne semble pas avoir été envisagé. Nous nous sommes posé la question suivante : si on se donne une fonction définie et continue sur le graphe de la fonction de Weierstrass, est-il possible de lui associer une fonction qui soit, au sens faible, son laplacien ? En pratique, il suffit d’utiliser une formulation faible, écrite à l’aide de formes de Dirichlet, construites par itérations successives sur une suite de graphes convergeant vers le domaine considéré. Pour une fonction continue sur ce domaine, son laplacien est obtenu comme la limite normalisée de la suite de laplaciens obtenus à chaque itération. Le spectre du laplacien ainsi construit est obtenu par décimation spectrale. Par rapport aux travaux existant, les résultats que nous présentons mettent en avant les spécificités dues au caractère non affine de notre étude. Déjà , la construction des formes de Dirichlet requiert la prise en compte de la géométrie très particulière du graphe. Ensuite, il faut disposer d’une mesure adaptée à l’intégration le long de courbes fractales.