Constructions récentes de groupes discrets simples

Date/heure
10 mars 2009
16:30 - 17:30

Oratrice ou orateur

Catégorie d'évènement
Colloquium


Résumé

Bertrand Remy

Il s’agit d’expliquer les questions de base en rapport avec l’existence et la construction de groupes infinis, simples et de type fini (c’est-à-dire engendrés par une partie finie). C’est un problème naturel de théorie des groupes. Une remarque de départ est que, pour les groupes infinis de type fini, être simple et être linéaire (c’est- à-dire isomorphe à un groupe de matrices) sont des propriétés incompatibles.

Ceci force à travailler sur des groupes pour lesquels les techniques de groupes de matrices ou de groupes algébriques sont inopérantes (mais pas les intuitions !). On expliquera qu’une question plus délicate et plus intéressante est celle de la construction de groupes infinis simples qui soient de présentation finie (c’est-à-dire pouvant être définis par une famille finie de générateurs soumis à un nombre fini de relations).

On finira en expliquant une stratégie récente de construction, s’appuyant sur une analogie (forcément limitée) avec les réseaux des groupes de Lie; les groupes obtenus agissent sur le produit de deux arbres (M. Burger et Sh. Mozes, 2000). Cette approche, en gros, sert à démontrer la simplicité d’autres réseaux d’immeubles (ce dernier point est un travail en commun avec P.-E. Caprace, 2007).