Date/heure
20 janvier 2021
14:00 - 15:00
Oratrice ou orateur
Youssef Sedrati
Catégorie d'évènement Séminaire des doctorants
Résumé
Cette présentation concerne l’étude des courses de polynômes irréductibles unitaires dans les corps de fonctions à (3) compétiteurs ou plus. Plus concrètement, soit (m in F_{q}[T]) un polynôme unitaire (avec (F_{q}) un corps à (q) éléments et (q) une puissance d’un premier (>2)) de degré (M geq 2), (r) un entier (geq 3). Pour (a in F_q[T]) premier avec (m) et pour (N in mathbb{N^{*}}), on désigne par (pi(a,m,N)) le nombre de polynômes irréductibles unitaires congrus à (a ) et de degré (N). On considère (A_{r}(m) ) l’ensemble des (r)-uplets des différents éléments ((a’_1,..,a’_r) in F_{q}[T]) modulo (m) qui sont premiers avec (m.) Pour ((a_1,..,a_r) in A_{r}(m)), on définit :
begin{align*}
P_{m;a_1,..,a_r} &:= left{ X in mathbb{N}^{*} : hspace{0,2cm}
sumlimits_{N=1}^{X} pi(a_1,m,N) > …> sumlimits_{N=1}^{X} pi(a_r,m,N)
right}
end{align*}
Ainsi, sous l’hypothèse LI, pour réaliser cette étude, il suffit d’étudier la densité naturelle suivante :
begin{align*}
delta_{m;a_1,..,a_r} :&= limlimits_{X longrightarrow +infty} frac{# left( P_{m;a_1,..,a_r} cap left{1,2,.., Xright} right)}{X}
end{align*}
Il s’agit d’analyser les différentes densités afin de déterminer l’équipe gagnante.