Difféomorphismes du cercle qui préservent l’aire

Date/heure
14 mars 2016
14:00 - 15:00

Oratrice ou orateur
Daniel Monclair

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé

Une des façons de comprendre une action de groupe consiste à  étudier les actions induites sur les n-uplets de points distincts. Ceci permet de produire d’autres actions du même groupe aux propriétés (récurrence, minimalité, ergodicité…) différentes. Par exemple, étant donné un groupe qui agit sur le cercle par difféomorphismes, on peut se demander si l’action sur les paires de points préserve une forme d’aire. Nous verrons que cette situation intervient naturellement dans l’étude des groupes d’isométries de certaines surfaces lorentziennes. Après avoir vu que dans ce cas il existe toujours un homéomorphisme du cercle qui conjugue l’action à  l’action projective d’un sous-groupe de PSL(2,R), nous étudierons la possibilité d’avoir une conjugaison par difféomorphisme.