Distributions invariantes sous l’action d’un groupe : propriétés de densité et de symétrie

Date/heure
30 octobre 2001
16:30 - 17:30

Oratrice ou orateur

Catégorie d'évènement
Colloquium


Résumé

Gérard Schiffmann

Si un groupe de Lie opère sur une variété, de manière différentiable, il opère aussi sur l’espace des distributions sur cette variété. On peut donc parler de distributions invariantes. Une manière naturelle d’en construire est de considérer, quand elles existent, les mesures invariantes portées par les orbites et une question naturelle est de savoir si le sous-espace engendré par ces mesures est faiblement dense dans l’espace des distributions invariantes.

On montrera sur des exemples simples que la situation ne l’est pas, puis on passera en revue quelques cas ou des résultats positifs sont connus: action adjointe d’un groupe réductif, espaces préhomogènes commutatifs, espaces symétriques, en restant dans le cadre de l’analyse harmonique sur les groupes réductifs.

Une question plus élémentaire est de prouver que, dans certaines situations, toute distribu- tion invariante a en plus une symétrie externe. Ceci conduit à des résultats de multiplicité 1 dont le prototype est le théorème de branchement pour les représentations de dimension finie des groupes classiques.