Entropie extrémale et flots de Yamabe (av. P. Suarez-Serrato, UNAM Mexico)

Date/heure
28 avril 2015
14:00 - 15:00

Oratrice ou orateur
Samuel Tapie

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé

Le flot géodésique sur les variétés riemanniennes est un système dynamique d’origine purement géométrique ; cependant relier ses propriétés dynamique à  la géométrie de la variété sous-jacente n’est pas toujours facile. Les travaux de Katok et de Besson-Courtois-Gallot ont montré que pour les variétés compactes à  courbure sectionnelle négative, les variétés localement symétriques correspondent exactement aux extrema de l’entropie. Qu’en est-il pour le flot sur des variétés qui n’admettent pas de structure localement symétrique ? Pour des variétés non-compactes ? Après avoir rappelé l’historique de ce problème, nous présenterons une réponse partielle à  ces questions : dans chaque classe conforme de métrique, les extrema de l’entropie correspondent à  des métriques à  courbure scalaire constante.