Equations de contraintes en théorie de champ scalaire

Date/heure
18 novembre 2014
14:00 - 15:00

Oratrice ou orateur
Bruno Premoselli

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé

En relativité générale, les équations de contraintes déterminent les données initiales permettant de résoudre les équations d’Einstein comme un problème d’évolution. La méthode conforme – initiée par Choquet-Bruhat, Lichnerowicz et York – rend ces équations déterminées en les posant sous la forme d’un système d’équations elliptiques non-linéaires (sur)-critiques fortement couplé. Nous étudierons dans cet exposé des propriété de stabilité de ce système elliptique. La notion de stabilité étudiée ici, définie comme une propriété de dépendance continue de l’ensemble des solutions du système en ses coefficients, se traduit en termes de pertinence physique de la méthode conforme dans la construction d’espace-temps solutions des équations d’Einstein. L’analyse de la stabilité du système des contraintes fait intervenir des techniques fines de blow-up et d’étude des défauts de compacité d’équations elliptiques critiques