Date/heure
28 février 2022
15:30 - 16:30
Oratrice ou orateur
Pierre Louis Blayac
Catégorie d'évènement Séminaire de géométrie différentielle
Résumé
Il est bien connu depuis la thèse de Margulis que les propriétés de mélange du flot géodésique des variétés riemanniennes fermées à courbure négative peuvent être utilisées pour obtenir divers résultats d’équidistribution : équidistribution des géodésiques fermées, ou encore équidistribution des orbites du groupe fondamental dans le revêtement universel. À l’aide des densités dites de Patterson-Sullivan, les idées de Margulis ont pu être appliquées à des contextes géométriques plus généraux ; par exemple par Roblin qui étudia des espaces localement CAT(-1) non compacts.
Dans cet exposé, nous discuterons de ces questions de mélange et équidistribution dans un autre contexte géométrique : celui des variétés projectives convexes, autrement dit des quotients d’ouverts proprement convexes d’un espace projectif réel. Ces variétés apparaissent naturellement lors de l’étude de certains sous-groupes discrets des groupes de Lie. Leurs droites projectives sont des géodésiques pour une certaine métrique finslérienne, dite de Hilbert (qui n’est en général pas CAT(0)), et on leur associe naturellement un flot géodésique. Les résultats qui seront présentés sont issus d’une collaboration avec Feng Zhu.