A general sieve problem

Date/heure
5 mai 2022
14:30 - 15:30

Lieu
Salle Döblin

Oratrice ou orateur
Andreas Weingartner (Southern Utah University, États-Unis)

Catégorie d'évènement
Analyse et théorie des nombres


Résumé

Given an arithmetic function θ, we consider the set
Bθ={n1:p|npθ(q<pqα||nqα)},
where p and q denote primes. Depending on the choice of θ, the possible sets Bθ include the set of prime powers, almost primes, friable numbers, dense numbers, and practical numbers.
We will discuss (1) asymptotic results for the counting function of Bθ, (2) a generalization of the Siegel-Walfisz theorem, and (3) the normal order of the number of prime factors of integers in Bθ.