Différentes notions de mélange en théorie des probabilités — Comment quantifier la (in)dépendance entre deux tribus ?

Date/heure
12 janvier 2023
09:15 - 10:15

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Rémi Peyre (IECL)

Catégorie d'évènement
Groupe de travail Probabilités et Statistique


Résumé

L’indépendance est peut-être le concept le plus central de toute la théorie des probabilités. Or, dans nombre de situations (à la fois modélisatoires et théoriques), l’indépendance entre certaines variables aléatoires ou tribus n’est pas réalisée parfaitement, mais seulement approximativement ou asymptotiquement… C’est donc un enjeu tout à fait naturel que de chercher un moyen d’évaluer quantitativement le niveau de dépendance entre deux v. a., afin de donner un sens précis à l’idée qu’elles soient “presque indépendantes”. Plus exactement, dans cet exposé nous présenterons différentes manière de quantifier la dépendance entre deux (sous-)tribus sur un même espace probabilisé.

Nous verrons qu’il peut exister différentes définitions naturelles pour quantifier la dépendance, non équivalentes les unes aux autres, mais ayant chacune des propriétés intéressantes. Nous verrons aussi comment, dans les contextes où il s’agit de tensoriser des résultats pour monter en dimension, le coefficient de ρ-mélange se distingue de ses concurrents. J’en profiterai pour présenter au passage deux résultat de mon cru autour du ρ-mélange.