Géodésiques et entropies sur les surfaces hyperboliques (III)

Date/heure
23 mars 2023
09:15 - 10:15

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Samuel Tapie (IECL)

Catégorie d'évènement
Groupe de travail Probabilités et Statistique


Résumé

Suivre une géodésique, c’est avancer tout droit sur un objet courbe. Les géodésiques sur les surfaces à courbure -1 (dites “hyperboliques”) sont les orbites d’un système dynamique chaotique étudié depuis le début du XXème siècle : le flot géodésique. Comprendre la trajectoire de chaque orbite est illusoire vu la sensibilité aux conditions initiales. En revanche, l’étude des probabilités invariantes par le flot nous donne de précieux renseignements sur son comportement de long terme. Dans cet exposé, je présenterai l’étude d’un problème à l’énoncé simple : combien y a-t-il de chemin (géodésique) qui part de x et revient en x en un temps au plus T ? Nous verrons que la réponse passe par des notions d’entropies, et qu’elle est crucialement liée à la compréhension de la mesure d’entropie maximale pour le flot.