Géométrie riemannienne et analyse spectrale sur les tores non commutatifs

Date/heure
1 avril 2021
15:45 - 16:45

Lieu
Zoom Meeting ID: 895 2739 9138, Passcode: 7ni0ti

Oratrice ou orateur
Raphaël Ponge (Université du Sichuan, Chengdu)

Catégorie d'évènement
Séminaire Théorie de Lie, Géométrie et Analyse


Résumé
Les tores non commutatifs sont des exemples bien connus d’espaces non commutatifs, quelque soit ce qu’ont peu entendre par espace non commutatif. Les travaux notamment de Connes-Tretkoff et Connes-Moscovici ont motivé le développement de différente notions de courbures pour les tores non commutatifs à partir de l’analyse spectrale de l’opérateur de laplace-Beltrami dans ce contexte. Jusqu’à récemment on a surtout regardé les métriques conformément plates ou les produits de telles métriques. Même pour ces métriques la noncommutativité des tores non commutatifs rend les calculus particulièrement difficiles.
Dans cet exposé on va s’intéresser aux métriques riemanniennes plus générales. Après avoir expliqué la construction de l’opérateur de Laplace-Beltrami dans ce contexte,  et en fonction du temps permis, les résultats suivants seront présentés:
  • Théorème de Gauss-Bonnet pour les métriques riemanniennes arbitraires. Cela étend un résultat de Connes-Tretkoff obtenu dans le cas conformément plat.
  • Loi de Weyl microlocale. Cela peut se voir comme un premier pas vers l’unique ergodicité quantique dans ce contexte.
  • Formule d’intégration “quantique”. C’est un analogue d’un résultat de Connes pour les variétés riemanniennes compactes et permet de retrouver la forme volume à partir de la trace de Dixmier. Cette dernière joue le rôle de l’intégrale en GNC.
  • Formule d’indice locale pour les tores non commutatifs équipés d’une structure Kähler non-commutative.
  • An analogue de l’inégalité de Cwikel-Lieb-Rozenblum pour les valeurs propres négatives d’opérateurs de Schrödinger avec des potentiels non-lisse. Cela devrait permettre d’avoir une loi de Weyl semi-classique pour de tels opérateurs. On obtient ainsi un lien entre la GNC et l’analyse semi-classique (au sens des écoles de Simon et de Birman-Solomyak).