Date/heure
11 décembre 2023
10:15 - 12:15
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Benoît Cadorel
Catégorie d'évènement Groupe de travail Géométrie
Résumé
J’exposerai deux points de vue principaux sur la construction d’espaces de modules de surfaces K3. D’une part, la théorie du schéma de Hilbert permet pour chaque entier d, de construire un espace de modules grossiers pour les K3 admettant une polarisation de carré 2d (dans la catégorie des espaces algébriques en général, mais on sait aussi construire cet espace comme variété quasi-projective dans le cadre complexe). D’autre part, la théorie des variations de structures de Hodge permet de construire un espace de modules fin pour les K3 marquées. Cette construction est rendue possible par le théorème de Torelli global joint au théorème de surjectivité de l’application des périodes, dont j’expliquerai les énoncés.
Je donnerai aussi quelques éléments permettant de décrire géométriquement cet espace, qui apparaît comme variété complexe non-séparée revêtant le domaine de périodes des surfaces K3. On verra notamment que l’on peut retrouver les espaces de modules de K3 polarisées comme quotients par des réseaux arithmétiques d’hypersurfaces adéquates dans cet espace de modules fin.