Date/heure
14 novembre 2024
14:15 - 15:15
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Guillaume Dumas (Lyon)
Catégorie d'évènement Séminaire Théorie de Lie, Géométrie et Analyse
Résumé
Vincent Lafforgue a montré que tout coefficient matriciel SO(2)-fini d’une représentation unitaire de SO(3) est 1/2-Hölderien – en dehors de certains points singuliers. Ce seul résultat joue un rôle important dans la preuve de la propriété (T) renforcée pour SL(3,R) et d’autres avancées récentes en algèbre d’opérateurs. Dans cet exposé, j’expliquerai comment ce résultat de régularité peut s’interpréter en terme de paires de Gelfand et de fonctions sphériques. Grâce à cela, je montrerai qu’on peut le généraliser à tous les groupes de Lie semi-simples en étudiant le comportement asymptotique de ces fonctions. Dans le cas non-compact, la structure des groupes de Lie en donne une représentation intégrale aisément manipulable. Le cas compact est étonnement plus difficile et nécessite de passer par l’analyse complexe.