Harmonic complex forms on Kähler-Einstein manifolds with Killing Spinc spinors

Date/heure
10 février 2015
15:30 - 16:30

Oratrice ou orateur
Roger Nakad

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé

In a joint work with Mikaela Pilca (University of Regensburg-Germany), we establish a lower bound for the first eigenvalue of the Spinc Dirac operator defined on a Kähler-Einstein manifold M of positive scalar curvature. This lower bound involves the index of M, its scalar curvature and an integer defining the Spinc structure. The limiting case is characterized by the existence of special spinor fields called Kählerian Killing spinors. As a geometric application of the limiting case, we prove that the only harmonic complex forms of type (k,k) (k>0) on Kähler-Einstein manifolds admitting a complex contact structure are the constant multiples of the Kähler form.