Harmonic complex forms on Kähler-Einstein manifolds with Killing Spin$^c$ spinors

Date/heure
10 février 2015
15:30 - 16:30

Oratrice ou orateur
Roger Nakad

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé

In a joint work with Mikaela Pilca (University of Regensburg-Germany), we establish a lower bound for the first eigenvalue of the Spin$^c$ Dirac operator defined on a Kähler-Einstein manifold $M$ of positive scalar curvature. This lower bound involves the index of $M$, its scalar curvature and an integer defining the Spin$^c$ structure. The limiting case is characterized by the existence of special spinor fields called Kählerian Killing spinors. As a geometric application of the limiting case, we prove that the only harmonic complex forms of type $(k, k)$ ($k>0$) on Kähler-Einstein manifolds admitting a complex contact structure are the constant multiples of the Kähler form.