Date/heure
21 janvier 2020
14:00 - 15:00
Oratrice ou orateur
Kévin Massard
Catégorie d'évènement Séminaire des doctorants
Résumé
Intuitivement, un feuilletage est une partition d’une variété (M) en sous-variétés connexes de même dimension, appelées feuilles. On peut s’intéresser à l’espace des feuilles, défini comme le quotient de (M) par la relation d’équivalence (mathcal{R}) qui identifie deux points de (M) s’ils sont une une même feuille. Cependant, cet espace peut être très singulier. On construit alors le groupoïde d’holonomie, groupoïde de Lie qui contient (mathcal{R}). Nous illustrerons ces notions avec quelques exemples simples.