Date/heure
4 avril 2024
10:45 - 11:45
Lieu
Salle Döblin
Oratrice ou orateur
Jairo Cugliari (Université Lyon 2)
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
L’apprentissage par transfert (transfert learning) vise à réutiliser les connaissances d’un ensemble de données source vers un ensemble de données cible similaire. Alors que plusieurs études abordent le problème de quoi ou comment transférer, la question très importante de quand le faire reste principalement sans réponse, surtout d’un point de vue théorique pour les problèmes de régression.
Dans l’exposé je présenterai le cadre général de l’apprentissage par transfert. Puis, je détaillerai un nouveau cadre théorique pour le problème du transfert de paramètres pour le modèle linéaire… Il est démontré que la qualité du transfert pour un nouveau vecteur d’entrée dépend de sa représentation dans une base propre impliquant les paramètres du problème. De plus, un test statistique est construit pour prédire si un modèle affiné (fine tuned) a un risque quadratique de prédiction inférieur au modèle cible de base pour un échantillon non observé. L’efficacité du test est illustrée sur des données synthétiques ainsi que des données réelles de consommation d’électricité.
David Obst, Badih Ghattas, Sandra Claudel, Jairo Cugliari, Yannig Goude, Georges Oppenheim,
Improved linear regression prediction by transfer learning, CSDA (2022)