Quantizing real semisimple Lie groups

Date/heure
7 novembre 2024
14:15 - 15:15

Lieu
Salle de séminaires Metz

Oratrice ou orateur
Kenny de Commer

Catégorie d'évènement
Séminaire Théorie de Lie, Géométrie et Analyse


Résumé

Let G be a semisimple real Lie group with Lie algebra g. We will show how the universal enveloping algebra U(g) naturally fits into a one-parameter family of algebras U_q(g) with interesting structure. Any of these algebras U_q(g) moreover allows for an associated C*-algebra, whose representation category closely resembles that of G. We mainly explain these ideas and results in the concrete case of SL(2,R). This is based on joint work with Joel Right Dzokou Talla.