Date/heure
2 avril 2020
09:15 - 11:45
Oratrice ou orateur
Boris Nectoux
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
Considérons le processus de Langevin suramorti (Xt)t≥0 solution de l’équation
différentielle stochastique sur R^d
: dXt = −∇f(Xt)dt + racine(h)dBt.
C’est un processus prototypique utilisé pour modéliser l’évolution de systèmes
statistiques. La fonction f : R^d → R est le potentiel du système et h > 0 sa tem-
pérature. Le processus de Langevin suramorti est métastable: il reste bloqué (piégé) dans des voisinages des minima locaux de f sur de longues périodes de temps avant de s’en échapper. C’est une des raisons majeures qui rend inaccessi-
bles l’observation de transitions entre les états macroscopiques du système ainsi que le calcul de quantités thermodynamiques par intégration directe des tra-
jectoires de (Xt)t≥0. De nombreux algorithmes ont été introduits ces dernières années pour accélérer l’échantillonnage de dynamiques métastables (e.g. les
méthodes de Monte-Carlo cinétique et les accelerated dynamics algorithms introduits par A.F. Voter et al. à Los Alamos). Ces algorithmes reposent sur des estimées précises de l’évènement de sortie d’un état macroscopique Ω ⊂ R
d à basse température (h<<1) et notamment sur le calcul asymptotique des taux de transition entre les états macroscopiques à l'aide de la célèbre loi d'Eyring-
Kramers (1935). Dans cet exposé, je présenterai des résultats récents marquant des avancées sig-
nificatives sur l'étude précise de l'évènement de sortie d'un état macroscopique Ω pour le processus de Langevin suramorti quand h << 1, ainsi que les nom-
breuses questions qui restent ouvertes.