La puissance du ρ-mélange

Date/heure
9 février 2023
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Rémi Peyre (IECL)

Catégorie d'évènement
Groupe de travail Probabilités et Statistique


Résumé

En probabilités, dans les situations où deux variables aléatoires X et Y (à valeurs dans des espaces quelconques) sont “presque” indépendantes sans l’être complètement pour autant (par exemple, entre deux valeurs éloignées d’une chaine de Markov ergodique), une question naturelle est de quantitifer cette dépendance partielle. Parmi les différentes mesures de dépendances conçues par les mathématiciens , l’une est particulièrement intéressante : il s’agit du coefficient de ρ-mélange, qu’on peut définir comme le coefficient de corrélation de Pearson maximal pouvant être obtenu entre deux v.a. réelles de la forme resp. f(X) et g(Y). Le ρ-mélange possède aussi d’autres définitions équivalentes que je présenterai brièvement, et qui en font dès le départ un outil particulièrement naturel.

Dans cet exposé, je présenterai la propriété dite de tensorisation, qui est spécifique au ρ-mélange, et rend cet outil particulièrement bien adapté pour borner la dépendance entre des v.a. “compliquées” faites d’une collection de v.a. plus simples. Une application où cette propriété est particulièrement bienvenue concerne l’étude de modèles de physique statistique comme celui d’Ising (non critique), où les variables aléatoires de base (appelées « spins ») sont indexées par ℤd, et où la corrélation entre deux spins individuels tend vers zéro lorsque la distance augmente. Une question qu’on aimerait alors résoudre est : que peut-on dire de la corrélation entre deux groupes de spins ; et en particulier, y a-t-il des bornes indépendantes de la taille de ces groupes…?

Je raconterai ensuite quelles difficultés soulève le résultat “de base” sur la tensorisation du ρ-mélange, et comment, dans un de mes travaux, j’ai établi un résultat de tensorisation généralisée permettant l’application effective de la tensorisation en physique statistique. Je conclurai en présentant quelques autres approches de l’idée de mélange (au sens de « indépendance asymptotique ») en physique statistique, et des liens qu’on peut espérer établir entre ces approches et celle par ρ-mélange.

En fait, cet exposé est en lien avec celui que j’avais donné le 12 janvier, où j’avais présenté un panorama des principales méthodes de quantification de l’idée de dépendance partielle (ainsi que des implications entre les unes et les autres) : le contenu de cette séance-ci sera, en substance, constitué par les points que je n’ai pas eu le temps de vous présenter en janvier. Néanmoins, j’ai préparé ce second exposé de sorte qu’il soit totalement indépendant du premier : vous pourrez donc le suivre sans problème même si vous n’étiez pas là en janvier ! \uD83D\uDE07